5 resultados para GENE DISCOVERY

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The INSIG2 rs7566605 polymorphism was identified for obesity (BMI> or =30 kg/m(2)) in one of the first genome-wide association studies, but replications were inconsistent. We collected statistics from 34 studies (n = 74,345), including general population (GP) studies, population-based studies with subjects selected for conditions related to a better health status ('healthy population', HP), and obesity studies (OB). We tested five hypotheses to explore potential sources of heterogeneity. The meta-analysis of 27 studies on Caucasian adults (n = 66,213) combining the different study designs did not support overall association of the CC-genotype with obesity, yielding an odds ratio (OR) of 1.05 (p-value = 0.27). The I(2) measure of 41% (p-value = 0.015) indicated between-study heterogeneity. Restricting to GP studies resulted in a declined I(2) measure of 11% (p-value = 0.33) and an OR of 1.10 (p-value = 0.015). Regarding the five hypotheses, our data showed (a) some difference between GP and HP studies (p-value = 0.012) and (b) an association in extreme comparisons (BMI> or =32.5, 35.0, 37.5, 40.0 kg/m(2) versus BMI<25 kg/m(2)) yielding ORs of 1.16, 1.18, 1.22, or 1.27 (p-values 0.001 to 0.003), which was also underscored by significantly increased CC-genotype frequencies across BMI categories (10.4% to 12.5%, p-value for trend = 0.0002). We did not find evidence for differential ORs (c) among studies with higher than average obesity prevalence compared to lower, (d) among studies with BMI assessment after the year 2000 compared to those before, or (e) among studies from older populations compared to younger. Analysis of non-Caucasian adults (n = 4889) or children (n = 3243) yielded ORs of 1.01 (p-value = 0.94) or 1.15 (p-value = 0.22), respectively. There was no evidence for overall association of the rs7566605 polymorphism with obesity. Our data suggested an association with extreme degrees of obesity, and consequently heterogeneous effects from different study designs may mask an underlying association when unaccounted for. The importance of study design might be under-recognized in gene discovery and association replication so far.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery that vitamin E (VE) regulates gene activity at the transcriptional level indicates that VE may exert part of its biological effects by mechanisms which may be independent of its well-recognised antioxidant function. The objective of this study was the identification of hepatic vitamin E-sensitive genes and examination of the effects of VE on their corresponding biological endpoints. Two groups of male rats were randomly assigned to either a VE-sufficient diet or to a control diet deficient in VE for 290 days. High-density oligonucleotide microarrays comprising over 7000 genes were used to assess the transcriptional response of the liver. Differential gene expression was monitored over a period of 9 months, at four different time-points, and rats were individually profiled. This experimental strategy identified several VE-sensitive genes, which were chronically altered by dietary VE. VE supplementation down-regulated scavenger receptor CD36, coagulation factor IX and 5-alpha-steroid reductase type 1 mRNA levels while hepatic gamma glutamyl-cysteinyl synthetase was significantly up-regulated. Measurement of the corresponding biological endpoints such as activated partial thromboplastin time, plasma dihydrotestosterone and hepatic glutathione substantiated the gene chip data which indicated that dietary VE plays an important role in a range of metabolic processes within the liver. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth of the maize (Zea mays) endosperm is tightly regulated by maternal zygotic and sporophytic genes, some of which are subject to a parent-of-origin effect. We report here a novel gene, maternally expressed gene1 (meg1), which shows a maternal parent-of-origin expression pattern during early stages of endosperm development but biallelic expression at later stages. Interestingly, a stable reporter fusion containing the meg1 promoter exhibits a similar pattern of expression. meg1 is exclusively expressed in the basal transfer region of the endosperm. Further, we show that the putatively processed MEG1 protein is glycosylated and subsequently localized to the labyrinthine ingrowths of the transfer cell walls. Hence, the discovery of a parent-of-origin gene expressed solely in the basal transfer region opens the door to epigenetic mechanisms operating in the endosperm to regulate certain aspects of nutrient trafficking from the maternal tissue into the developing seed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P,0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.