19 resultados para GAAS SINGLE-CRYSTALS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared and Raman microspectroscopy have been used to follow the photodimerisation reactions of single crystals, the alpha- and beta-forms of trans-cinnamic acid. This approach allows the starting materials and products -alpha-truxillic acid that has C-i symmetry and beta-truxinic acid, which has C-s symmetry-to be identified. It also allows the topotactic nature of the reaction to be confirmed. Attempts to produce the poorly-defined unreactive gamma-form of trans-cinnamic acid resulted only in a mixture of the alpha- and beta-forms. The findings suggest a wide role for these spectroscopic methods in monitoring solid-state organic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystals of trans-cinnamic acid and of a range of derivatives of this compound containing halogen substituents on the aromatic ring have been reacted with 165 Torr pressure of bromine vapour in a sealed desiccator at 20 degrees C for 1 week. Infrared and Raman microspectroscopic examination of the crystals shows that bromination of the aliphatic double bond, but not of the aromatic ring, has occurred. It is demonstrated also that the reaction is truly gas-solid in nature. A time-dependent study of these reactions shows that they do not follow a smooth diffusion-controlled pathway. Rather the reactions appear to be inhomogeneous and to occur at defects within the crystal. The reaction products are seen to flake from the surface of the crystal. It is shown, therefore, that these are not single crystal to single crystal transitions, as have been observed previously for the photodimerisation of trans-cinnamic acid and several of its derivatives. It is shown that there are no by-products of the reaction and that finely ground samples react to form the same products as single crystals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the 1: 2 condensate of benzildihydrazone and 2-acetylpyridine as a tetradentate N donor ligand L, LaL(NO3)(3) (1) and EuL(NO3)(3) (2), which are pale yellow in colour, are synthesized. While single crystals of 1 could not be obtained, 2 crystallises as a monodichloromethane solvate, 2 center dot CH2Cl2 in the space group Cc with a = 11.7099(5) angstrom, b = 16.4872(5) angstrom, c = 17.9224(6) angstrom and beta = 104.048(4)degrees. From the X-ray crystal structure, 2 is found to be a rare example of monohelical complex of Eu(III). Complex 1 is diamagnetic. The magnetic moment of 2 at room temperature is 3.32 BM. Comparing the FT-IR spectra of 1 and 2, it is concluded that 1 also is a mononuclear single helix. H-1 NMR reveals that both 1 and 2 are mixtures of two diastereomers. In the case of the La(III) complex (1), the diastereomeric excess is only 10% but in the Eu(III) complex 2 it is 80%. The occurrence of diastereomerism is explained by the chiralities of the helical motif and the type of pentakis chelates present in 1 and 2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photodimerisation of single crystals of substituted cinnamic acid has been monitored continuously by infrared microscopy using a synchrotron source. The beta-form of 2,4-dichloro-trans-cinnamic acid dimerises under ultraviolet irradiation to form the corresponding beta-truxinic acid derivative in a reaction which follows strictly first order kinetics. By contrast the corresponding reactions in single crystals of beta-2-chloro-trans-cinnamic acid and beta-4-chloro-trans-cinnamic acid deviate somewhat from first order kinetics as a result of solid-state effects. In all three cases the reactions proceed smoothly from monomer to dimer with no hint of any reaction intermediate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu-2(CN)(2)Br](H2O)-H-. (I), K-3[Cu-6(CN)(6)I-3](.)2H(2)O (II), Cs[Cu-3(CN)(3)Cl] (III), Cs[Cu-3(CN)(3)Br] (IV), and Cs-2[Cu-4(CN)(4)I-2](H2O)-H-. (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu-3(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu-II(OH2)(4)][Cu-4(I)(CN)(6)], a known phase, and [Cu-II(OH2)(4)][Cu-4(I)(CN)(4)I-2] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu-II(OH2)(4)][Cu-2(I)(CN)I-2](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intrinsically chiral metal and mineral surfaces show enantioselective behaviour without modifiers. Examples are artificial high-Miller-index surfaces of metal single crystals with cubic bulk lattice symmetry, which have no mirror planes and are therefore chiral, or surfaces of naturally occurring crystallites of some common minerals, such as alpha-quartz or calcite. Recent findings with regards to the surface geometry, reactivity and thermal stability of intrinsically chiral surfaces are discussed. A number of enantioselective effects have been reported in connection with the adsorption of small chiral molecules (e.g. alanine, cysteine) on intrinsically chiral surfaces under well-defined conditions. From a combination of experimental surface science techniques and theoretical ab initio model calculations it emerges that these effects are due to a combination of attractive and repulsive adsorbate-substrate and inter-adsorbate interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strong metal support interaction (SMSI) was first described in 1978 by Tauster [1-4]. The effect was observed as a severely negative effect on CO and H2 uptake on the catalyst after high temperature calcination under reducing conditions (heating above ~ 700 K) [1,2]. It also had a negative effect on the reaction rate for reactions, such as alkane hydrogenolysis [5,6]. It appeared that the effect occurred for catalysts comprised of reducible supports which were treated at elevated temperature in reducing conditions [2-4]. A classic support which has manifested this behaviour in many studies is TiO2. Over the years following the first discovery of SMSI it has been recognised that the effect is not always negative – for instance for the CO-H2 reaction for which it appears to have a positive effect [5,6]. Further it was noted that hydrogen reduction was not necessary to observe the effect of CO adsorption suppression, it also occurs by vacuum treatment [7], though it should be noted that vacuum treatment at elevated temperature is, in effect, a reducing environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial ultrathin titanium dioxide films of 0.3 to similar to 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO2 phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals. (c) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single crystals of four erbium-chromium sulfides have been grown by chemical vapor transport using iodine as the transporting agent. Single-crystal X-ray diffraction reveals that in Er(3)CrS(6) octahedral sites are occupied exclusively by Cr(3+) cations, leading to one-dimensional CrS(4)(5-) chains of edge-sharing octahedra, while in Er(2)CrS(4), Er(3+), and Cr(2+) cations occupy the available octahedral sites in an ordered manner. By contrast, in Er(6)Cr(2)S(11) and Er(4)CrS(7), Er(3+) and Cr(2+) ions are disordered over the octahedral sites. In Er(2)CrS(4), Er(6)Cr(2)S(11), and Er(4)CrS(7), the network of octahedra generates an anionic framework constructed from M(2)S(5) slabs of varying thickness, linked by one-dimensional octahedral chains. This suggests that these three phases belong to a series in which the anionic framework may be described by the general formula [M(2n+1)S(4n+3)](x-), with charge balancing provided by Er(3+) cations located in sites of high-coordination number within one-dimensional channels defined by the framework. Er(4)CrS(7), Er(6)Cr(2)S(11), and Er(2)CrS(4) may thus be considered as the n = 1, 2, and infinity members of this series. While Er(4)CrS(7) is paramagnetic, successive magnetic transitions associated with ordering of the chromium and erbium sub-lattices are observed on cooling Er(3)CrS(6) (T(C)(Cr) = 30 K; T(C)(Er) = 11 K) and Er(2)CrS(4) (T(N)(Cr) = 42 K, T(N)(Er) = 10 K) whereas Er(6)Cr(2)S(11) exhibits ordering of the chromium sub-lattice only (T(N) = 11.4 K).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nine of the compounds [M(L2−)(p-cymene)] (M = Ru, Os, L2− = 4,6-di-tert-butyl-N-aryl-o-amidophenolate) were prepared and structurally characterized (Ru complexes) as coordinatively unsaturated, formally 16 valence electron species. On L2−-ligand based oxidation to EPR-active iminosemiquinone radical complexes, the compounds seek to bind a donor atom (if available) from the N-aryl substituent, as structurally certified for thioether and selenoether functions, or from the donor solvent. Simulated cyclic voltammograms and spectroelectrochemistry at ambient and low temperatures in combination with DFT results confirm a square scheme behavior (ECEC mechanism) involving the Ln ligand as the main electron transfer site and the metal with fractional (δ) oxidation as the center for redox-activated coordination. Attempts to crystallize [Ru(Cym)(QSMe)](PF6) produced single crystals of [RuIII(QSMe •−)2](PF6) after apparent dissociation of the arene ligand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The single scattering albedo w_0l in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength l and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio w_0l(r)/w_0l(r0) of two single scattering albedo spectra is a linear function of w_0l(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum w_0l(r) via one known spectrum w_0l(r0). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.