45 resultados para GA-FACE
em CentAUR: Central Archive University of Reading - UK
Resumo:
The measurement of the impact of technical change has received significant attention within the economics literature. One popular method of quantifying the impact of technical change is the use of growth accounting index numbers. However, in a recent article Nelson and Pack (1999) criticise the use of such index numbers in situations where technical change is likely to be biased in favour of one or other inputs. In particular they criticise the common approach of applying observed cost shares, as proxies for partial output elasticities, to weight the change in quantities which they claim is only valid under Hicks neutrality. Recent advances in the measurement of product and factor biases of technical change developed by Balcombe et al (2000) provide a relatively straight-forward means of correcting product and factor shares in the face of biased technical progress. This paper demonstrates the correction of both revenue and cost shares used in the construction of a TFP index for UK agriculture over the period 1953 to 2000 using both revenue and cost function share equations appended with stochastic latent variables to capture the bias effect. Technical progress is shown to be biased between both individual input and output groups. Output and input quantity aggregates are then constructed using both observed and corrected share weights and the resulting TFPs are compared. There does appear to be some significant bias in TFP if the effect of biased technical progress is not taken into account when constructing the weights
Resumo:
Self-assembly of monodisperse, silica-encapsulated, face-centered tetragonal FePt nanoparticles forms closely packed 2D arrays (see figure). Placing monodisperse FePt nanoparticles in silica nanocapsules allows the transition from a disordered face-centered cubic phase to a ferromagnetic crystalline face-centered tetragonal structure at elevated temperature without severe sintering. These materials are potential candidates for the generation of ultrahigh-density magnetic recording media.
Resumo:
Williams syndrome (WS) is characterized by apparent relative strengths in language, facial processing and social cognition but by profound impairment in spatial cognition, planning and problem solving. Following recent research which suggests that individuals with WS may be less linguistically able than was once thought, in this paper we begin to investigate why and how they may give the impression of linguistic proficiency despite poor standardized test results. This case study of Brendan, a 12-year-old boy with WS, who presents with a considerable lack of linguistic ability, suggests that impressions of linguistic competence may to some extent be the result of conversational strategies which enable him to compensate for various cognitive and linguistic deficits with a considerable degree of success. These conversational strengths are not predicted by his standardized language test results, and provide compelling support for the use of approaches such as Conversation Analysis in the assessment of individuals with communication impairments.
Resumo:
A representative community sample of primiparous depressed women and a nondepressed control group were assessed while in interaction with their infants at 2 months postpartum. At 3 months, infants were assessed on the Still-face perturbation of face to face interaction, and a subsample completed an Instrumental Learning paradigm. Compared to nondepressed women, depressed mothers' interactions were both less contingent and less affectively attuned to infant behavior. Postnatal depression did not adversely affect the infant's performance in either the Still-face perturbation or the Instrumental Learning assessment. Maternal responsiveness in interactions at 2 months predicted the infant's performance in the Instrumental Learning assessment but not in the Still-face perturbation. The implications of these findings for theories of infant cognitive and emotional development are discussed.
Resumo:
Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age-and gender-matched control participants underwent fMRI scanning while performing a face encoding task with onlineeye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.
Resumo:
This commentary raises general questions about the parsimony and generalizability of the SIMS model, before interrogating the specific roles that the amygdala and eye contact play in it. Additionally, this situates the SIMS model alongside another model of facial expression processing, with a view to incorporating individual differences in emotion perception.
Resumo:
This paper considers the application of weightless neural networks (WNNs) to the problem of face recognition and compares the results with those provided using a more complicated multiple neural network approach. WNNs have significant advantages over the more common forms of neural networks, in particular in term of speed of operation and learning. A major difficulty when applying neural networks to face recognition problems is the high degree of variability in expression, pose and facial details: the generalisation properties of a WNN can be crucial. In the light of this problem a software simulator of a WNN has been built and the results of some initial tests are presented and compared with other techniques