10 resultados para Fuzzy system
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper describes the development and validation of a novel web-based interface for the gathering of feedback from building occupants about their environmental discomfort including signs of Sick Building Syndrome (SBS). The gathering of such feedback may enable better targeting of environmental discomfort down to the individual as well as the early detection and subsequently resolution by building services of more complex issues such as SBS. The occupant's discomfort is interpreted and converted to air-conditioning system set points using Fuzzy Logic. Experimental results from a multi-zone air-conditioning test rig have been included in this paper.
Resumo:
Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
This paper describes the development of an experimental distributed fuzzy control system for heating and ventilation (HVAC) systems within a building. Each local control loop is affected by a number of local variables, as well as information from neighboring controllers. By including this additional information it is hoped that a more equal allocation of resources can be achieved.
Resumo:
Risk and uncertainty are, to say the least, poorly considered by most individuals involved in real estate analysis - in both development and investment appraisal. Surveyors continue to express 'uncertainty' about the value (risk) of using relatively objective methods of analysis to account for these factors. These methods attempt to identify the risk elements more explicitly. Conventionally this is done by deriving probability distributions for the uncontrolled variables in the system. A suggested 'new' way of "being able to express our uncertainty or slight vagueness about some of the qualitative judgements and not entirely certain data required in the course of the problem..." uses the application of fuzzy logic. This paper discusses and demonstrates the terminology and methodology of fuzzy analysis. In particular it attempts a comparison of the procedures with those used in 'conventional' risk analysis approaches and critically investigates whether a fuzzy approach offers an alternative to the use of probability based analysis for dealing with aspects of risk and uncertainty in real estate analysis