4 resultados para Fuzzy semi inner products,
em CentAUR: Central Archive University of Reading - UK
Resumo:
Approximations to the scattering of linear surface gravity waves on water of varying quiescent depth are Investigated by means of a variational approach. Previous authors have used wave modes associated with the constant depth case to approximate the velocity potential, leading to a system of coupled differential equations. Here it is shown that a transformation of the dependent variables results in a much simplified differential equation system which in turn leads to a new multi-mode 'mild-slope' approximation. Further, the effect of adding a bed mode is examined and clarified. A systematic analytic method is presented for evaluating inner products that arise and numerical experiments for two-dimensional scattering are used to examine the performance of the new approximations.
Resumo:
Quaternary-aged calcrete horizons are common weathering products in arid and semi-arid regions. It is, however, unclear how calcrete forming processes respond to the major oscillations in climate that occur over the Quaternary period. This paper presents a U-series-based calcrete age database from the Sorbas basin, southeast Spain. The study constructs an age frequency distribution of these ages which is consequently compared to a range of palaeoenvironmental records from the Mediterranean. The age distribution presented here suggests that the formation of pedogenic calcrete horizons in the Sorbas basin primarily occurs during 'warm' isotope stages (MIS 1 and 5), with very few calcrete ages occurring during cold glacial/stadial stages (MIS 2, 3 and 4). It is suggested that this is a function of the environments that existed during 'warm' isotope stages being more conducive to calcrete development than those that existed during cold climate episodes. In a semi-arid region such as the Sorbas basin it is likely that increased aridity during glacial stages, coupled with reduced vegetation and accelerated landscape instability, was crucial in reducing rates of calcrete formation. In a semi-arid region such as southeast Spain, calcrete formation during the Quaternary, therefore, oscillates with climate change but is primarily a "warm" episode phenomenon. It is suggested that further studies are required to see how calcrete genesis responds to environmental change in more humid parts of the Mediterranean. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.