9 resultados para Fuel adulteration

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of polyaromatic ionomers with similar equivalent weights but very different sulphonic acid distributions along the ionomer backbone has been designed and prepared. By synthetically organising the sequence-distribution so that it consists of fully defined ionic segments (containing singlets, doublets or quadruplets of sulphonic acid groups) alternating strictly with equally well-defined nonionic spacer segments, a new class of polymers which may be described as microblock ionomers has been developed. These materials exhibit very different properties and morphologies from analogous randomly substituted systems. Progressively extending the nonionic spacer length in the repeat unit (maintaining a constant equivalent weight by increasing the degree of sulphonation. of the ionic segment) leads to an increasing degree of nanophase separation between hydrophilic and hydrophobic domains in these materials. Membranes cast from ionomers with the more highly phase-separated morphologies show significantly higher onset temperatures for uncontrolled swelling in water. This new type of ionomer design has enabled the fabrication of swelling-resistant hydrocarbon membranes, suitable for fuel cell operation, with very much higher ion exchange capacities (>2 meq g(-1)) than those previously reported in the literature. When tested in a fuel cell at high temperature (120 degrees C) and low relative humidity (35% RH), the best microblock membrane matched the performance of Nafion 112. Moreover, comparative low load cycle testing of membrane -electrode assemblies suggests that the durability of the new membranes under conditions of high temperature and low relative humidity is superior to that of conventional perfluorinated materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This account summarizes recent work by us and others on the development of ligands for the separation of actinides from lanthanides contained in nuclear waste streams in the context of a future European strategy for nuclear waste management. The current status of actinide/lanthanide separations worldwide is briefly discussed, and the synthesis, development, and testing of different classes of heterocyclic soft N- and S-donor ligands in Europe over the last 20 years is presented. This work has led to the current benchmark ligand that displays many of the desirable qualities for industrial use. The improvement of radiolytic stability through ligand design is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The waste materials generated in the nuclear fuel cycle are very varied,ranging from the tailings arising from mining and processing uranium ore, depleted uranium in a range of chemical forms, to a range of process wastes of differing activities and properties. Indeed, the wastes generated are intimately linked to the options selected in operating the nuclear fuel cycle, most obviously to the management of spent fuel. An open fuel cycle implies the disposal of highly radioactive spent fuel, whereas a closed fuel cycle generates a complex array of waste streams. On the other hand, a closed fuel cycle offers options for waste management, for example reduction in highly active waste volume, decreased radiotoxicity, and removal of fissile material. Many technological options have been proposed or explored, and each brings its own particular mix of wastes and environmental challenges.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.