8 resultados para Fringing Reefs

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica. Semi-structured interviews with key stakeholders in the Wakatobi Marine National Park indicated that coral mining was extensively practised, and is responsible for the absence of large non-branching corals on the Sampela reef Blast fishing is also practised in the Wakatobi Marine Park, and the authors, together with students, showed that blast fishing resulted in coral bleaching and not mortality of two Porites lutea colonies. In addition, we showed that monitoring of bleaching in Porites colonies induced by blast fishing could be a useful way of monitoring blast fishing practices in susceptible areas in the Indo-Pacific. The techniques used in this study are appropriate for use by volunteers with sufficient training, and provide excellent projects for dissertation students reading undergraduate degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral growth rate can be affected by environmental parameters such as seawater temperature, depth, and light intensity. The natural reef environment is also disturbed by human influences such as anthropogenic pollutants, which in Barbados are released close to the reefs. Here we describe a relatively new method of assessing the history of pollution and explain how these effects have influenced the coral communities off the west coast of Barbados. We evaluate the relative impact of both anthropogenic pollutants and natural stresses. Sclerochronology documents framework and skeletal growth rate and records pollution history (recorded as reduced growth) for a suite of sampled Montastraea annularis coral cores. X-radiography shows annual growth band patterns of the corals extending back over several decades and indicates significantly lower growth rate in polluted sites. Results using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the whole sample (aragonite, organic matter, trapped particulate matter, etc.), have shown contrasting concentrations of the trace elements (Cu, Sn, Zn, and Pb) between corals at different locations and within a single coral. Deepwater corals 7 km apart, record different levels of Pb and Sn, suggesting that a current transported the metal pollution in the water. In addition, the 1995 hurricanes are associated with anomalous values for Sn and Cu from most sites. These are believed to result from dispersion of nearshore polluted water. We compared the concentrations of trace elements in the coral growth of particular years to those in the relevant contemporaneous seawater. Mean values for the concentration factor in the coral, relative to the water, ranged from 10 for Cu and Ni to 2.4 and 0.7 for Cd and Zn, respectively. Although the uncertainties are large (60-80%), the coral record enabled us to demonstrate the possibility of calculating a history of seawater pollution for these elements from the 1940s to 1997. Our values were much higher than those obtained from analysis of carefully cleaned coral aragonite; they demonstrate the incorporation of more contamination including that from particulate material as well as dissolved metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accuracy and mesh generation are key issues for the high-resolution hydrodynamic modelling of the whole Great Barrier Reef. Our objective is to generate suitable unstructured grids that can resolve topological and dynamical features like tidal jets and recirculation eddies in the wake of islands. A new strategy is suggested to refine the mesh in areas of interest taking into account the bathymetric field and an approximated distance to islands and reefs. Such a distance is obtained by solving an elliptic differential operator, with specific boundary conditions. Meshes produced illustrate both the validity and the efficiency of the adaptive strategy. Selection of refinement and geometrical parameters is discussed. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied growth and estimated recruitment of massive coral colonies at three sites, Kaledupa, Hoga and Sampela, separated by about 1.5 km in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. There was significantly higher species richness (P<0.05), coral cover (P<0.05) and rugosity (P<0.01) at Kaledupa than at Sampela. A model for coral reef growth has been developed based on a rational polynomial function, where dx/dt is an index of coral growth with time; W is the variable (for example, coral weight, coral length or coral area), up to the power of n in the numerator and m in the denominator; a1……an and b1…bm are constants. The values for n and m represent the degree of the polynomial, and can relate to the morphology of the coral. The model was used to simulate typical coral growth curves, and tested using published data obtained by weighing coral colonies underwater in reefs on the south-west coast of Curaçao [‘Neth. J. Sea Res. 10 (1976) 285’]. The model proved an accurate fit to the data, and parameters were obtained for a number of coral species. Surface area data was obtained on over 1200 massive corals at three different sites in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. The year of an individual's recruitment was calculated from knowledge of the growth rate modified by application of the rational polynomial model. The estimated pattern of recruitment was variable, with little numbers of massive corals settling and growing before 1950 at the heavily used site, Sampela, relative to the reef site with little or no human use, Kaledupa, and the intermediate site, Hoga. There was a significantly greater sedimentation rate at Sampela than at either Kaledupa (P<0.0001) or Hoga (P<0.0005). The relative mean abundance of fish families present at the reef crests at the three sites, determined using digital video photography, did not correlate with sedimentation rates, underwater visibility or lack of large non-branching coral colonies. Radial growth rates of three genera of non-branching corals were significantly lower at Sampela than at Kaledupa or at Hoga, and there was a high correlation (r=0.89) between radial growth rates and underwater visibility. Porites spp. was the most abundant coral over all the sites and at all depths followed by Favites (P<0.04) and Favia spp. (P<0.03). Colony ages of Porites corals were significantly lower at the 5 m reef flat on the Sampela reef than at the same depth on both other reefs (P<0.005). At Sampela, only 2.8% of corals on the 5 m reef crest are of a size to have survived from before 1950. The Scleractinian coral community of Sampela is severely impacted by depositing sediments which can lead to the suffocation of corals, whilst also decreasing light penetration resulting in decreased growth and calcification rates. The net loss of material from Sampela, if not checked, could result in the loss of this protective barrier which would be to the detriment of the sublittoral sand flats and hence the Sampela village.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To analyze patterns in marine productivity, harmful algal blooms, thermal stress in coral reefs, and oceanographic processes, optical and biophysical marine parameters, such as sea surface temperature, and ocean color products, such as chlorophyll-a concentration, diffuse attenuation coefficient, total suspended matter concentration, chlorophyll fluorescence line height, and remote sensing reflectance, are required. In this paper we present a novel automatic Satellite-based Ocean Monitoring System (SATMO) developed to provide, in near real-time, continuous spatial data sets of the above-mentioned variables for marine-coastal ecosystems in the Gulf of Mexico, northeastern Pacific Ocean, and western Caribbean Sea, with 1 km spatial resolution. The products are obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images received at the Direct Readout Ground Station (located at CONABIO) after each overpass of the Aqua and Terra satellites. In addition, at the end of each week and month the system provides composite images for several ocean products, as well as weekly and monthly anomaly composites for chlorophyll-a concentration and sea surface temperature. These anomaly data are reported for the first time for the study region and represent valuable information for analyzing time series of ocean color data for the study of coastal and marine ecosystems in Mexico, Central America, and the western Caribbean.