1 resultado para Fractal Approach

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.