17 resultados para Fox, Greg

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the causal mechanisms promoting group formation in carnivores has been widely investigated, particularly how fitness components affect group formation. Population density may affect the relative benefits of natal philopatry versus dispersal. Density effects on individual behavioral strategies have previously been studied through comparisons of different populations, where differences could be confounded by between-site effects. We used a single population of red foxes (Vulpes vulpes) in the city of Bristol, UK, that underwent a natural perturbation in density to compare key changes in 1) group structure, 2) within-group relatedness, 3) mating system, 4) dispersal, and 5) dominance attainment. At high densities (19.6-27.6 adults km(-2)), group sex ratios were equal and included related and unrelated individuals. At low densities (4.0-5.5 adults km(-2)), groups became female biased and were structured around philopatric females. However, levels of within-group relatedness were unchanged. The genetic mating patterns changed with no instances of multiple-paternity litters and a decline in the frequency of extrapair litters of cubs from <= 77% to <= 38%. However, the number of genetically monogynous groups did not differ between periods. Dispersal was male biased at both high and low densities. At high density, most dominant males in the study groups appeared to have gained dominance after dispersing, but natal philopatry was an equally successful strategy at low density; conversely, most dominant females were philopatric individuals at both high and low densities. These results illustrate how density may alter behavioral strategies such as mating patterns and how this, in turn, alters group structure in a single population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male-biased sexual size dimorphism is typical of polygynous mammals, where the degree of dimorphism in body mass is related to male intrasexual competition and the degree of polygyny. However, the importance of body mass in monogamous mammals is largely unknown. We investigated the effect of body mass on life-history parameters and territory size in the red fox (Vulpes vulpes), a socially monogamous canid with slight sexual dimorphism. Increased body size in males appeared to confer an advantage in territory acquisition and defense contests because heavier males held larger territories and exerted a greater boundary pressure on smaller neighbors. Heavier male foxes invested more effort in searching for extrapair matings by moving over a wider area and farther from their territories, leading to greater reproductive success. Males that sired cubs outside their own social group appeared to be heavier than males that only sired cubs within their social group or that were cuckolded, but our results should be treated with caution because sample sizes were small. Territory size, boundary pressure, and paternity success were not related to age of males. In comparison, body mass of females was not related to territory size, probability of breeding, litter size, or cub mass. Only age affected probability of breeding in females: younger females reproduced significantly less than did older females, although we did not measure individual nutritional status. Thus, body mass had a significant effect on life-history traits and territory size in a socially monogamous species comparable to that reported in polygynous males, even in the absence of large size dimorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The period following the withdrawal of parental care has been highlighted as a key developmental period for juveniles. One reason for this is that juveniles cannot forage as competently as adults, potentially placing them at greater risk from environmentally-induced changes in food availability. However, no study has examined this topic. Using a long-term dataset on red foxes (Vulpes vulpes), we examined (i) dietary changes that occurred in the one-month period following the attainment of nutritional independence, (ii) diet composition in relation to climatic variation, and (iii) the effect of climatic variation on subsequent full-grown mass. Diet at nutritional independence contained increased quantities of easy-to-catch food items (earthworms and insects) when compared with pre-independence. Interannual variation in the volume of rainfall at nutritional independence was positively correlated to the proportion of earthworms in cub diet. Pre-independence cub mass and rainfall immediately following nutritional independence explained a significant proportion of variance in full-grown mass, with environmental variation affecting full-grown mass of the entire cohorts. Thus, weather-mediated availability of easy-to-catch food items at a key developmental stage has lifelong implications for the development of juvenile foxes by affecting full-grown mass, which in turn appears to be an important component of individual reproductive potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Seyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage-specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Disease epizootics can significantly influence host population dynamics and the structure and functioning of ecological communities. Sarcoptic mange Sarcoptes scabiei has dramatically reduced red fox populations Vulpes vulpes in several countries, including Britain, although impacts on demographic processes are poorly understood. We review the literature on the impact of mange on red fox populations, assess its current distribution in Britain through a questionnaire survey and present new data on resultant demographic changes in foxes in Bristol, UK. 2. A mange epizootic in Sweden spread across the entire country in < 10 years resulting in a decline in fox density of up to 95%; density remained lowered for 15–20 years. In Spain, mange has been enzootic for > 75 years and is widely distributed; mange presence was negatively correlated with habitat quality. 3. Localized outbreaks have occurred sporadically in Britain during the last 100 years. The most recent large-scale outbreak arose in the 1990s, although mange has been present in south London and surrounding environs since the 1940s. The questionnaire survey indicated that mange was broadly distributed across Britain, but areas of perceived high prevalence (> 50% affected) were mainly in central and southern England. Habitat type did not significantly affect the presence/absence of mange or perceived prevalence rates. Subjective assessments suggested that populations take 15–20 years to recover. 4. Mange appeared in Bristol's foxes in 1994. During the epizootic phase (1994–95), mange spread through the city at a rate of 0.6–0.9 km/month, with a rise in infection in domestic dogs Canis familiaris c. 1–2 months later. Juvenile and adult fox mortality increased and the proportion of females that reproduced declined but litter size was unaffected. Population density declined by > 95%. 5. In the enzootic phase (1996–present), mange was the most significant mortality factor. Juvenile mortality was significantly higher than in the pre-mange period, and the number of juveniles classified as dispersers declined. Mange infection reduced the reproductive potential of males and females: females with advanced mange did not breed; severely infected males failed to undergo spermatogenesis. In 2004, Bristol fox population density was only 15% of that in 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hunting foxes with hounds has been a countryside pursuit in Britain since the 17th Century, but its effect nationally on habitat management is little understood by the general public. A survey questionnaire was distributed to 163 mounted fox hunts of England and Wales to quantify their management practices in woodland and other habitat. Ninety-two hunts (56%), covering 75,514 km(2), returned details on woodland management motivated by the improvement of their sport. The management details were verified via on-site visits for a sample of 200 woodlands. Following verification, the area of woodlands containing the management was conservatively estimated at 24,053 (+/- 2241) ha, comprising 5.9% of woodland area within the whole of the area hunted by the 92 hunts. Management techniques included: tree planting, coppicing, felling, ride and perimeter management. A case study in five hunt countries in southern England examined, through the use of botanical survey and butterfly counts, the consequences of the hunt management on woodland ground flora and butterflies. Managed areas had, within the last 5 years, been coppiced and rides had been cleared. Vegetation cover in managed and unmanaged sites averaged 86% and 64%, respectively, and managed areas held on average 4 more plant species and a higher plant diversity than unmanaged areas (Shannon index of diversity: 2.25 vs. 1.95). Both the average number of butterfly species (2.2 vs. 0.3) and individuals counted (4.6 vs. 0.3) were higher in the managed than unmanaged sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain forkhead (FOX) transcription factors have been shown to play an intrinsic role in controlling cell cycle progression. In particular, the FoxO subclass has been shown to regulate cell cycle entry and exit, whereas the expression and activity of FoxM1 is important for the correct coupling of DNA synthesis to mitosis. In this chapter, I describe a method for measuring FoxO and FoxM1 transcription factor DNA binding in nuclear extracts from mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ [Genes Dev. 14 (2000) 142]. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey against the draft genome sequence and the cDNA/EST database of Ciona intestinalis identified a number of genes encoding transcription factors regulating a variety of processes including development. In the present study, we describe almost complete sets of genes for Fox, ETS-domain transcription factors, nuclear receptors, and NFkappaB as well as other factors regulating NFkappaB activity, with their phylogenetic nature. Vertebrate Fox transcription factors are currently delineated into 17 subfamilies: FoxA to FoxQ. The present survey yielded 29 genes of this family in the Ciona genome, 24 of which were Ciona orthologues of known Fox genes. In addition, we found 15 ETS aenes, 17 nuclear receptor genes, and several NFkappaB signaling pathway genes in the Ciona genome. The number of Ciona genes in each family is much smaller than that of vertebrates, which represents a simplified feature of the ascidian genome. For example, humans have two NFkappaB genes, three Rel genes, and five NFAT genes, while Ciona has one gene for each family. The Ciona genome also contains smaller numbers of genes for the NFkappaB regulatory system, i.e. after the split of ascidians/vertebrates, vertebrates evolved a more complex NFkappaB system. The present results therefore provide molecular information for the investigation of complex developmental processes, and an insight into chordate evolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FoxC, FoxF, FoxL1 and FoxQ1 genes have been shown to be clustered in some animal genomes, with mesendodermal expression hypothesised as a selective force maintaining cluster integrity. Hypotheses are, however, constrained by a lack of data from the Lophotrochozoa. Here we characterise members of the FoxC, FoxF, FoxL1 and FoxQ1 families from the annelid Capitella teleta and the molluscs Lottia gigantea and Patella vulgata. We cloned FoxC, FoxF, FoxL1 and FoxQ1 genes from C. teleta, and FoxC, FoxF and FoxL1 genes from P. vulgata, and established their expression during development. We also examined their genomic organisation in C. teleta and L. gigantea, and investigated local syntenic relationships. Our results show mesodermal and anterior gut expression is a common feature of these genes in lophotrochozoans. In L. gigantea FoxC, FoxF and FoxL1 are closely linked, while in C. teleta Ct-foxC and Ct-foxL1 are closely linked, with Ct-foxF and Ct-foxQ1 on different scaffolds. Adjacent to these genes there is limited evidence of local synteny. This demonstrates conservation of genomic organisation and expression of these genes can be traced in all three bilaterian Superphyla. These data are evaluated against competing theories for the long-term maintenance of gene clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade genomic approaches have begun to revolutionise the study of animal diversity. In particular, genome sequencing programmes have spread beyond the traditional model species to encompass an increasing diversity of animals from many different phyla, as well as unicellular eukaryotes that are closely related to the animals. Whole genome sequences allow researchers to establish, with reasonable confidence, the full complement of any particular family of genes in a genome. Comparison of gene complements from appropriate genomes can reveal the evolutionary history of gene families, indicating when both gene diversification and gene loss have occurred. More than that, however, assembled genomes allow the genomic environment in which individual genes are found to be analysed and compared between species. This can reveal how gene diversification occurred. Here, we focus on the Fox genes, drawing from multiple animal genomes to develop an evolutionary framework explaining the timing and mechanism of origin of the diversity of animal Fox genes. Ancient linkages between genes are a prominent feature of the Fox genes, depicting a history of gene clusters, some of which may be relevant to understanding Fox gene function.