12 resultados para Forensic science
em CentAUR: Central Archive University of Reading - UK
Resumo:
Previous analyses of Australian samples have suggested that populations of the same broad racial group (Caucasian, Asian, Aboriginal) tend to be genetically similar across states. This suggests that a single national Australian database for each such group may be feasible, which would greatly facilitate casework. We have investigated samples drawn from each of these groups in different Australian states, and have quantified the genetic homogeneity across states within each racial group in terms of the "coancestry coefficient" F(ST). In accord with earlier results, we find that F(ST) values, as estimated from these data, are very small for Caucasians and Asians, usually <0.5%. We find that "declared" Aborigines (which includes many with partly Aboriginal genetic heritage) are also genetically similar across states, although they display some differentiation from a "pure" Aboriginal population (almost entirely of Aboriginal genetic heritage).
Resumo:
This case study from North Spain, highlights the importance of the collection of mites in addition to insects, from crime scenes or corpses subjected to environmental constraints that reduce or minimise insect activity, such as hanged corpses. In addition, this analysis highlights the relevance of arthropods’ collection in the field, even after the corpse has been moved away for autopsy. Four species of mites, phoretic on carrion (Silphidae) and rove (Staphylinidae) beetles, complemented and reinforced the autopsy analysis as well as the scarce information provided by insect activity. Poecilochirus carabi Canestrini & Canestrini, 1882 and Poecilochirus (Physoparasitus) davydovae Hyatt, 1980 (Mesostigmata: Parasitidae) were found in association with two Silphidae, Nicrophorus Fabricius, 1775 and Necrodes Leach, 1815, only when sampled in the autopsy room; this is suggestive of host-switching of mites and was likely due to the lack of availability of specific carriers in the field. The interpretation of the activity of Parasitidae mites both in the field and the autopsy room allows a better understanding of the timing and circumstances of decomposition. Phoretic deutonymphs of Pelzneria Scheucher 1957 (Astigmata: Histiostomatidae) were highly abundant, mostly P. crenulata Oudemans, 1909 and are reported for the first time on a Staphylinidae rove beetle, Creophilus maxillosus (L., 1758). Surprisingly, in this case study no Pelzneria were associated with the Silphidae found, which are their most common hosts, such as Necrodes littoralis (L., 1758) and Nicrophorus interruptus (Stephens, 1830). All histiostomatids were removed from the staphylinid (rove beetle) collected from the soil, at the scene of death, suggesting a recent arrival of the beetle. The occurrence of Staphylinidae beetles and their associated mites, such as Parasitidae and Pelzneria, and the information they provided would have been easily overlooked or lost if only the autopsy sampling would have been considered in the analysis of the case. The four mite species are reported for the first time for the Iberian Peninsula.
Resumo:
There has been recent interest in the use of X-chromosomal loci for forensic and relatedness testing casework, with many authors developing new X-linked short tandem repeat (STR) loci suitable for forensic use. Here we present formulae for two key quantities in paternity testing, the average probability of exclusion and the paternity index, which are suitable for Xchromosomal loci in the presence of population substructure.
Resumo:
We discuss the utility of single nucleotide polymorphism loci for full trio and mother-unavailable paternity testing cases, in the presence of population substructure and relatedness of putative and actual fathers. We focus primarily on the expected number of loci required to gain specified probabilities of mismatches, and report the expected proportion of paternity indices greater than three threshold values for these loci. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study details validation of two separate multiplex STR systems for use in paternity investigations. These are the Second Generation Multiplex (SGM) developed by the UK Forensic Science Service and the PowerPlex 1 multiplex commercially available from Promega Inc. (Madison, WI, USA). These multiplexes contain 12 different STR systems (two are duplicated in the two systems). Population databases from Caucasian, Asian and Afro-Caribbean populations have been compiled for all loci. In all but two of the 36 STR/ethnic group combinations, no evidence was obtained to indicate inconsistency with Hardy-Weinberg (HW) proportions. Empirical and theoretical approaches have been taken to validate these systems for paternity testing. Samples from 121 cases of disputed paternity were analysed using established Single Locus Probe (SLP) tests currently in use, and also using the two multiplex STR systems. Results of all three test systems were compared and no non-conformities in the conclusions were observed, although four examples of apparent germ line mutations in the STR systems were identified. The data was analysed to give information on expected paternity indices and exclusion rates for these STR systems. The 12 systems combined comprise a highly discriminating test suitable for paternity testing. 99.96% of non-fathers are excluded from paternity on two or more STR systems. Where no exclusion is found, Paternity Index (PI) values of > 10,000 are expected in > 96% of cases.
Resumo:
Assigning probabilities to alleged relationships, given DNA profiles, requires, among other things, calculation of a likelihood ratio (LR). Such calculations usually assume independence of genes: this assumption is not appropriate when the tested individuals share recent ancestry due to population substructure. Adjusted LR formulae, incorporating the coancestry coefficient F(ST), are presented here for various two-person relationships, and the issue of mutations in parentage testing is also addressed.
Resumo:
Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.
Resumo:
The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (−20 °C) or refrigerated (4 °C). Portions of skeletal muscle tissue (∼1.5 g) were interred in microcosms (72 mm diameter × 120 mm height) containing sieved (2 mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a significant impact on the microbial activity (carbon dioxide respiration) and chemistry of the surrounding soil including: pH, electroconductivity, ammonium, nitrate, phosphate and potassium. This is the first laboratory controlled study to measure changes in inorganic chemistry in soil associated with the decomposition of skeletal muscle tissue in combination with microbial activity.
Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition?
Resumo:
The repeated introduction of an organic resource to soil can result in its enhanced degradation. This phenomenon is of primary importance in agroecosystems, where the dynamics of repeated nutrient, pesticide, and herbicide amendment must be understood to achieve optimal yield. Although not yet investigated, the repeated introduction of cadaveric material is an important area of research in forensic science and cemetery planning. It is not currently understood what effects the repeated burial of cadaveric material has on cadaver decomposition or soil processes such as carbon mineralization. To address this gap in knowledge, we conducted a laboratory experiment using ovine (Ovis aries) skeletal muscle tissue (striated muscle used for locomotion) and three contrasting soils (brown earth, rendzina, podsol) from Great Britain. This experiment comprised two stages. In Stage I skeletal muscle tissue (150 g as 1.5 g cubes) was buried in sieved (4.6 mm) soil (10 kg dry weight) calibrated to 60% water holding capacity and allowed to decompose in the dark for 70 days at 22 °C. Control samples comprised soil without skeletal muscle tissue. In Stage II, soils were weighed (100 g dry weight at 60% WHC) into 1285 ml incubation microcosms. Half of the soils were designated for a second tissue amendment, which comprised the burial (2.5 cm) of 1.5 g cube of skeletal muscle tissue. The remaining half of the samples did not receive tissue. Thus, four treatments were used in each soil, reflecting all possible combinations of tissue burial (+) and control (−). Subsequent measures of tissue mass loss, carbon dioxide-carbon evolution, soil microbial biomass carbon, metabolic quotient and soil pH show that repeated burial of skeletal muscle tissue was associated with a significantly greater rate of decomposition in all soils. However, soil microbial biomass following repeated burial was either not significantly different (brown earth, podsol) or significantly less (rendzina) than new gravesoil. Based on these results, we conclude that enhanced decomposition of skeletal muscle tissue was most likely due to the proliferation of zymogenous soil microbes able to better use cadaveric material re-introduced to the soil.
Resumo:
The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.