92 resultados para Foreign Antigen
em CentAUR: Central Archive University of Reading - UK
Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen
Resumo:
Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.
Resumo:
To determine the intra-individual (physiological) variation of prostate-specific antigen (PSA) measurements in men after a benign prostatic biopsy. Sixty-four men were prospectively assessed, all of whom had a benign prostatic biopsy within the preceding 13 months. The degree of intra-individual variability was established by calculating the coefficient of variation on four PSA levels obtained from each patient weekly over a month. Six patients were subsequently diagnosed with prostate cancer and their data are presented separately. In the remaining 58 patients the median (range) individual mean PSA value was 6.3 (0.5-34.1) ng/mL. The median (range) coefficient of variation within the group was 9.5 (2.4-76.1)%. There was a clear linear relationship between mean PSA level and the standard deviation. In 48 of the 63 patients analysed, the coefficient of variation for serum PSA values in the group as a whole was greater than the variation claimed for the assay technique. The significance of the linear relationship between PSA and the standard deviation is discussed, with particular reference to those men who had a benign prostate biopsy.
Resumo:
It has long been suggested that the overall shape of the antigen combining site (ACS) of antibodies is correlated with the nature of the antigen. For example, deep pockets are characteristic of antibodies that bind haptens, grooves indicate peptide binders, while antibodies that bind to proteins have relatively flat combining sites. In. 1996, MacCallum, Martin and Thornton used a fractal shape descriptor and showed a strong correlation of the shape of the binding region with the general nature of the antigen. However, the shape of the ACS is determined primarily by the lengths of the six complementarity-determining regions (CDRs). Here, we make a direct correlation between the lengths of the CDRs and the nature of the antigen. In addition, we show significant differences in the residue composition of the CDRs of antibodies that bind to different antigen classes. As well as helping us to understand the process of antigen recognition, autoimmune disease and cross-reactivity these results are of direct application in the design of antibody phage libraries and modification of affinity. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.