94 resultados para Force decay
em CentAUR: Central Archive University of Reading - UK
Resumo:
The influence of a large meridional submarine ridge on the decay of Agulhas rings is investigated with a 1 and 2-layer setup of the isopycnic primitive-equation ocean model MICOM. In the single-layer case we show that the SSH decay of the ring is primarily governed by bottom friction and secondly by the radiation of Rossby waves. When a topographic ridge is present, the effect of the ridge on SSH decay and loss of tracer from the ring is negligible. However, the barotropic ring cannot pass the ridge due to energy and vorticity constraints. In the case of a two-layer ring the initial SSH decay is governed by a mixed barotropic–baroclinic instability of the ring. Again, radiation of barotropic Rossby waves is present. When the ring passes the topographic ridge, it shows a small but significant stagnation of SSH decay, agreeing with satellite altimetry observations. This is found to be due to a reduction of the growth rate of the m = 2 instability, to conversions of kinetic energy to the upper layer, and to a decrease in Rossby-wave radiation. The energy transfer is related to the fact that coherent structures in the lower layer cannot pass the steep ridge due to energy constraints. Furthermore, the loss of tracer from the ring through filamentation is less than for a ring moving over a flat bottom, related to a decrease in propagation speed of the ring. We conclude that ridges like the Walvis Ridge tend to stabilize a multi-layer ring and reduce its decay.
Resumo:
The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.
Resumo:
The Indian Ocean water that ends up in the Atlantic Ocean detaches from the Agulhas Current retroflection predominantly in the form of Agulhas rings and cyclones. Using numerical Lagrangian float trajectories in a high-resolution numerical ocean model, the fate of coherent structures near the Agulhas Current retroflection is investigated. It is shown that within the Agulhas Current, upstream of the retroflection, the spatial distributions of floats ending in the Atlantic Ocean and floats ending in the Indian Ocean are to a large extent similar. This indicates that Agulhas leakage occurs mostly through the detachment of Agulhas rings. After the floats detach from the Agulhas Current, the ambient water quickly looses its relative vorticity. The Agulhas rings thus seem to decay and loose much of their water in the Cape Basin. A cluster analysis reveals that most water in the Agulhas Current is within clusters of 180 km in diameter. Halfway in the Cape Basin there is an increase in the number of larger clusters with low relative vorticity, which carry the bulk of the Agulhas leakage transport through the Cape Basin. This upward cascade with respect to the length scales of the leakage, in combination with a power law decay of the magnitude of relative vorticity, might be an indication that the decay of Agulhas rings is somewhat comparable to the decay of two-dimensional turbulence.
Resumo:
We report an extended version of our normal coordinate program ASYM40, which may be used to transform Cartesian force constants from ab initio calculations to a force field in nonredundant internal (symmetry) coordinates. When experimental data are available, scale factors for the theoretical force field may then be optimized by least-squares refinement. The alternative of refining an empirical force field to fit a wide variety of data, as with the previous version ASYM20, has been retained. We compare the results of least-squares refinement of the full harmonic force field with least-squares refinement of only the scale factors for an SCF calculated force field and conclude that the latter approach may be useful for large molecules where more sophisticated calculations are impractical. The refinement of scale factors for a theoretical force field is also useful when there are only limited spectroscopic data. The program will accept ab initio calculated force fields from any program that presents Cartesian force constants as output. The program is available through Quantum Chemistry Program Exchange.
Resumo:
The relationship of the anharmonic force constants in curvilinear internal coordinates to the observed vibration-rotation spectrum of a molecule is reviewed. A simplified method of setting up the required non-linear coordinate transformations is described: this makes use of an / tensor, which is a straightforward generalization of the / matrix used in the customary description of harmonic force constant calculations. General formulae for the / tensor elements, in terms of the familiar L matrix elements, are presented. The use of non-linear symmetry coordinates and redundancies are described. Sample calculations on the water and ammonia molecules are reported.
Resumo:
General expressions for the force constants and dipole‐moment derivatives of molecules are derived, and the problems arising in their practical application are reviewed. Great emphasis is placed on the use of the Hartree–Fock function as an approximate wavefunction, and a number of its properties are discussed and re‐emphasised. The main content of this paper is the development of a perturbed Hartree–Fock theory that makes possible the direct calculation of force constants and dipole‐moment derivatives from SCF–MO wavefunctions. Essentially the theory yields ∂ϕi / ∂RJα, the derivative of an MO with respect to a nuclear coordinate.
Resumo:
Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.
Resumo:
The harmonic and anharmonic force field of acetylene has been determined in a least-squares calculation from recently determined data on the spectroscopic constants of various isotopic species (including the vibrational l-doubling constant). A general quadratic and cubic force field was used, but a constrained quartic force field containing only 8 of the 23 possible quartic constants. The results are discussed and compared with earlier work.