4 resultados para Foraging strategies
em CentAUR: Central Archive University of Reading - UK
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
The large pine weevil, Hylobius abietis, is a serious pest of reforestation in northern Europe. However, weevils developing in stumps of felled trees can be killed by entomopathogenic nematodes applied to soil around the stumps and this method of control has been used at an operational level in the UK and Ireland. We investigated the factors affecting the efficacy of entomopathogenic nematodes in the control of the large pine weevil spanning 10 years of field experiments, by means of a meta-analysis of published studies and previously unpublished data. We investigated two species with different foraging strategies, the ‘ambusher’ Steinernema carpocapsae, the species most often used at an operational level, and the ‘cruiser’ Heterorhabditis downesi. Efficacy was measured both by percentage reduction in numbers of adults emerging relative to untreated controls and by percentage parasitism of developing weevils in the stump. Both measures were significantly higher with H. downesi compared to S. carpocapsae. General linear models were constructed for each nematode species separately, using substrate type (peat versus mineral soil) and tree species (pine versus spruce) as fixed factors, weevil abundance (from the mean of untreated stumps) as a covariate and percentage reduction or percentage parasitism as the response variable. For both nematode species, the most significant and parsimonious models showed that substrate type was consistently, but not always, the most significant variable, whether replicates were at a site or stump level, and that peaty soils significantly promote the efficacy of both species. Efficacy, in terms of percentage parasitism, was not density dependent.
Resumo:
The foraging strategies of two natural enemies of the peach-potato aphid Myzus persicae: the seven-spot ladybird Coccinella septempunctata and the parasitoid wasp Diaeretiella rapae, were investigated. Specifically the roles of plant semiochemicals in the location of plants infested with M. persicae by these natural enemies were examined. I investigated the olfactory responses of female C. septempunctata to volatiles collected from M. persicae and four Brassica cultivars; Brassica rapa, B. juncea, B. napus cultivar ‘Apex’ and B. napus cultivar ‘Courage’ and wild-type Arabidopsis thaliana that were: undamaged, previously infested by M. persicae and infested with M. persicae. C. septempunctata showed no attraction to volatiles from M. persicae alone. C. septempunctata significantly changed its searching behaviour in response to plant volatiles from B. rapa, B. napus cv. ‘Apex’ and Arabidopsis infested with M. persicae. C. septempunctata was also found to display a significant turning bias when foraging on a branching horizontal wire stem. A model was developed to investigate how turning biases affect the foraging efficiency of C. septempunctata in dichotomous branched environments. Simulations using this model indicated that turning biases could potentially increase searching efficiency. D. rapae showed a significant preference for volatiles from M. persicae infested wild-type Arabidopsis but no preference to volatiles from M. persicae alone or M. persicae honeydew. Volatile emissions by Arabidopsis were shown to be localised to the area of aphid-infestation rather than systemic. Using gas chromatography plants infested with M. persicae were shown to emit a quantitatively different volatile blend than undamaged plants. In experiments with jasmonate mutants of Arabidopsis the jasmonate (octadecanoid) wound response pathway was implicated as being important for the production of M. persicae induced volatiles, attractive to D. rapae. Other wound response pathways were also found to be involved in the production of the full blend of M. persicae induced volatiles.
Resumo:
There is growing evidence that, rather than maximizing energy intake subject to constraints, many animals attempt to regulate intake of multiple nutrients independently. In the complex diets of animals such as herbivores, the consumption of nutritionally imbalanced foods is sometimes inevitable, forcing trade-offs between eating too much of nutrients present in the foods in relative excess against too little of those in deficit. Such situations are not adequately represented in existing formulations of foraging theory. Here we provide the necessary theory to fit this case, using an approach that combines state-space models of nutrition with Tilman's models of resource exploitation (Tilman 1982, Resource Competition and Community Structure, Princeton: Princeton University Press). Our approach was to construct a smooth fitness landscape over nutrient space, centred on a 'target' intake at which no fitness cost is incurred, and this leads to a natural classification of the simple possible fitness landscapes based on Taylor series approximations of landscape shape. We next examined how needs for multiple nutrients can be assessed experimentally using direct measures of animal performance as the common currency, so that the nutritional strategies of animals can be mapped on to the performance surface, including the position of regulated points of intake and points of nutrient balance when fed suboptimal foods. We surveyed published data and conducted an experiment to map out the performance landscape of a generalist leaf-feeding caterpillar, Spodoptera littoralis. (C) 2004 Tire Association for the Study of Animal Behaviour. Poblished by Elsevier Ltd. All rights reserved.