3 resultados para Foraging area
em CentAUR: Central Archive University of Reading - UK
Resumo:
Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro, Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the 'islands of fertility' created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island. Published by Elsevier Ltd.
Resumo:
Reintroductions are used worldwide to mitigate biodiversity loss. One prominent case is a charismatic raptor of conservation concern, the Red Kite Milvus milvus. This species has been reintroduced across the UK over the last 25 years following its near extinction after centuries of persecution. The species was not expected to recolonize urban areas; its historical association with human settlements is attributed to scavenging on human waste and refuse, a resource now greatly reduced on the streets of modern Western cities. However, the species has become a common day-time visitor to a large conurbation centred on the town of Reading, southern England, approximately 20 km from the first English reintroduction site. Given a near-absence of breeding and roost sites, we investigated foraging opportunities and habitat associations that might explain use by Red Kites of this urban area. Surveys of discarded human foods and road-kill suggested that these could support at most 13−29 kites/day. Face-to-face surveys of a cross-section of residents revealed that 4.5% (equivalent to 4349 households) provided supplementary food for kites. Using estimates of per-household resource provision from another study, we calculated that this level is potentially sufficient to provision 142−320 kites, a substantial proportion of the total estimated to visit the conurbation each day (between 140 and 440). Road transects found positive associations between Red Kites and residential areas. We therefore suggest that the decision made by thousands of individuals to provide supplementary food for Red Kites is the primary factor explaining their day-time abundance in this urban area.
Resumo:
The foraging strategies of two natural enemies of the peach-potato aphid Myzus persicae: the seven-spot ladybird Coccinella septempunctata and the parasitoid wasp Diaeretiella rapae, were investigated. Specifically the roles of plant semiochemicals in the location of plants infested with M. persicae by these natural enemies were examined. I investigated the olfactory responses of female C. septempunctata to volatiles collected from M. persicae and four Brassica cultivars; Brassica rapa, B. juncea, B. napus cultivar ‘Apex’ and B. napus cultivar ‘Courage’ and wild-type Arabidopsis thaliana that were: undamaged, previously infested by M. persicae and infested with M. persicae. C. septempunctata showed no attraction to volatiles from M. persicae alone. C. septempunctata significantly changed its searching behaviour in response to plant volatiles from B. rapa, B. napus cv. ‘Apex’ and Arabidopsis infested with M. persicae. C. septempunctata was also found to display a significant turning bias when foraging on a branching horizontal wire stem. A model was developed to investigate how turning biases affect the foraging efficiency of C. septempunctata in dichotomous branched environments. Simulations using this model indicated that turning biases could potentially increase searching efficiency. D. rapae showed a significant preference for volatiles from M. persicae infested wild-type Arabidopsis but no preference to volatiles from M. persicae alone or M. persicae honeydew. Volatile emissions by Arabidopsis were shown to be localised to the area of aphid-infestation rather than systemic. Using gas chromatography plants infested with M. persicae were shown to emit a quantitatively different volatile blend than undamaged plants. In experiments with jasmonate mutants of Arabidopsis the jasmonate (octadecanoid) wound response pathway was implicated as being important for the production of M. persicae induced volatiles, attractive to D. rapae. Other wound response pathways were also found to be involved in the production of the full blend of M. persicae induced volatiles.