9 resultados para Fontanellas, Claudio
em CentAUR: Central Archive University of Reading - UK
Resumo:
Research in the last four decades has brought a considerable advance in our understanding of how the brain synthesizes information arising from different sensory modalities. Indeed, many cortical and subcortical areas, beyond those traditionally considered to be ‘associative,’ have been shown to be involved in multisensory interaction and integration (Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest, because of the prominent role played by vision in guiding our actions and anticipating their tactile consequences in everyday life. In this chapter, we focus on the functional role that visuo-tactile processing may play in driving two types of body-object interactions: avoidance and approach. We will first review some basic features of visuo-tactile interactions, as revealed by electrophysiological studies in monkeys. These will prove to be relevant for interpreting the subsequent evidence arising from human studies. A crucial point that will be stressed is that these visuo-tactile mechanisms have not only sensory, but also motor-related activity that qualifies them as multisensory-motor interfaces. Evidence will then be presented for the existence of functionally homologous processing in the human brain, both from neuropsychological research in brain-damaged patients and in healthy participants. The final part of the chapter will focus on some recent studies in humans showing that the human motor system is provided with a multisensory interface that allows for continuous monitoring of the space near the body (i.e., peripersonal space). We further demonstrate that multisensory processing can be modulated on-line as a consequence of interacting with objects. This indicates that, far from being passive, the monitoring of peripersonal space is an active process subserving actions between our body and objects located in the space around us.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects. It focuses on the types of data and models that typically inform RIAs for energy policies; the organisations involved; and issues of data exchange between energy companies and policy-makers. Examples are derived from the European Commission, the UK, Italy, the Netherlands and France. It is concluded that the technical and economic analysis underpinning RIAs on energy policy and regulation varies significantly depending on the type of organisation carrying them out.
Resumo:
Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.