5 resultados para Focal neurological disease
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular phar- macology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeu- tics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent with modulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.
Resumo:
BACKGROUND AND PURPOSE Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB 1 receptors. EXPERIMENTAL APPROACH The anticonvulsant profiles of two CBDV BDSs (50–422 mg·kg −1 ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB 1 receptors was evaluated using displacement binding assays. KEY RESULTS CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg −1 ) and audiogenic seizure models (≥87 mg·kg −1 ), and suppressed pilocarpine-induced convulsions (≥100 mg·kg −1 ). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ 9 -tetrahydrocannabinol and Δ 9 -tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB 1 cannabinoid receptors than purified CBDV. CONCLUSIONS AND IMPLICATIONS CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB 1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy.
Resumo:
Reviewed here is the existing evidence for the effects of ginseng extracts and isolated ginsenosides relevant to cognition in humans. Clinical studies in healthy volunteers and in patients with neurological disease or deficit, evidence from preclinical models of cognition, and pharmacokinetic data are considered. Conditions under which disease modification may indirectly benefit cognition but may not translate to cognitive benefits in healthy subjects are discussed. The number of chronic studies of ginseng effects in healthy individuals is limited, and the results from acute studies are inconsistent, making overall assessment of ginseng's efficacy as a cognitive enhancer premature. However, mechanistic results are encouraging; in particular, the ginsenosides Rg 3 , Rh 1 , Rh 2 , Rb 1 , Rd, Rg 2 , and Rb 3 , along with the aglycones protopanaxadiol and protopanaxatriol, warrant further attention. Compound K has a promising pharmacokinetic profile and can affect neurotransmission and neuroprotection. Properly conducted trials using standardized tests in healthy individuals reflecting the target population for ginseng supplementation are required to address inconsistencies in results from acute studies. The evidence summarized here suggests ginseng has potential, but unproven, benefits on cognition.
Resumo:
An analysis was undertaken of clinic-based questionnaires that asked people with Parkinson's disease and a control group of older people without a known neurological condition about their experiences of constipation. People with Parkinson's disease report higher constipation on a validated objective measure, the Rome criterion (59% vs. 20.9%); a behavioral indicator, laxative-taking (38.4% vs. 14.2%); and subjective self-report of being always or often concerned by it (33.4% vs. 6.1%). Many people with Parkinson's disease experience constipation problems but they may not bring these to the attention of their healthcare providers. More research is required to understand the causes and management options. (C) 2006 Movement Disorder Society.
Resumo:
G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.