4 resultados para Foam-mat

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High circulating levels of triglyceride-rich lipoproteins (TGRL) represent an independent risk factor for coronary artery disease. Here, we show that TGRL inhibit the efflux of cholesterol from 'foam cell' macrophages to lipid-poor apolipoprotein (apo) A1, and may thereby inhibit arterial reverse cholesterol transport and promote the formation of atherosclerotic lesions. Human (THP-1) monocyte-derived macrophages were pre-incubated (48h) with acetylated low-density lipoprotein (AcLDL) to provide a foam cell model of cholesterol efflux to apoA1. Pre-incubation of macrophage 'foam cells' with TGRL (0-200 mug/ml, 0-24 h) inhibited the efflux of exogenously radiolabelled ([H-3]), endogenously synthesised ([C-14]) and cellular cholesterol mass to lipid-poor apoA1, but not control medium, during a (subsequent) efflux period. This inhibition is dependent upon the length of prior exposure to, and concentration of, TGRL employed, but is independent of changes in intracellular triglyceride accumulation or turnover of the cholesteryl ester pool. Despite the negative impact of TGRL on cholesterol efflux, major proteins involved in this process-namely apoE, ABCA1, SR-B1 and caveolin-1-were unaffected by TGRL pre-incubation, suggesting that exposure to these lipoproteins inhibits an alternate, and possibly novel, anti-atherogenic pathway. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surfactant properties of aqueous protein mixtures ( ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation. uorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two- photon excitation. uorescence microscopy of nest foams treated with fluorescent marker ( anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H2O/D2O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied ( 0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of similar to20 Angstrom, a middle layer of similar to30 Angstrom, and a more diffuse submerged layer projecting some 25 Angstrom into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.