20 resultados para Floodplain lakes

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of climate change over the past 5000 years the Sahara changed from savannah to a desert landscape. The beds of ancient lakes are home to snail shells and the petrified roots of trees and shrubs. Examples of human occupation can also be seen in the form of fireplaces and discarded tools. Examination of the geological history of these sites can give a clearer picture of how the climate changed and how humans coped with these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal BP. Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of climate change over the past 5000 years the Sahara changed from savannah to a desert landscape. The beds of ancient lakes are home to snail shells and the petrified roots of trees and shrubs. Examples of human occupation can also be seen in the form of fireplaces and discarded tools. Examination of the geological history of these sites can give a clearer picture of how the climate changed and how humans coped with these changes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disproportionately little attention has been paid to the dry season trade-off between rice and (inland capture) fish production on the floodplains of Bangladesh, compared to the same trade-off during the flood season. As the rural economy grows increasingly dominated by dry-season irrigated rice production, and floodplain land and water come under ever-increasing pressure during the dry winter months, there is an urgent need to focus attention on these dry months that are so critical to the survival and propagation of the floodplain resident fish, and to the poor people that depend on these fish for their livelihood. This article examines three important dry-season natural resource constraints to floodplain livelihoods in Bangladesh, and finds a common factor at the heart of all three: rice cultivation on lands at low and very low elevations. The article articulates the system interlinkages that bind these constraints and the long-run trend towards irrigated rice cropping on lower-lying lands, and suggests a management approach based on locally tailored strategies to arrest this trend. Apart from its direct relevance to the floodplains of Bangladesh, which support more than 100 million people, these lessons have relevance for river floodplain systems elsewhere in the developing world, notably the Mekong Delta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of fishing mortality via fishing effort remains fundamental to most fisheries management strategies even at the local community or co-management level. Decisions to support such strategies require knowledge of the underlying response of the catch to changes in effort. Even under adaptive management strategies, imprecise knowledge of the response is likely to help accelerate the adaptive learning process. Data and institutional capacity requirements to employ multi-species biomass dynamics and age-structured models invariably render their use impractical particularly in less developed regions of the world. Surplus production models fitted to catch and effort data aggregated across all species offer viable alternatives. The current paper seeks models of this type that best describe the multi-species catch–effort responses in floodplain-rivers, lakes and reservoirs and reef-based fisheries based upon among fishery comparisons, building on earlier work. Three alternative surplus production models were fitted to estimates of catch per unit area (CPUA) and fisher density for 258 fisheries in Africa, Asia and South America. In all cases examined, the best or equal best fitting model was the Fox type, explaining up to 90% of the variation in CPUA. For lake and reservoir fisheries in Africa and Asia, the Schaefer and an asymptotic model fitted equally well. The Fox model estimates of fisher density (fishers km−2) at maximum yield (iMY) for floodplain-rivers, African lakes and reservoirs and reef-based fisheries are 13.7 (95% CI [11.8, 16.4]); 27.8 (95% CI [17.5, 66.7]) and 643 (95% CI [459,1075]), respectively and compare well with earlier estimates. Corresponding estimates of maximum yield are also given. The significantly higher value of iMY for reef-based fisheries compared to estimates for rivers and lakes reflects the use of a different measure of fisher density based upon human population size estimates. The models predict that maximum yield is achieved at a higher fishing intensity in Asian lakes compared to those in Africa. This may reflect the common practice in Asia of stocking lakes to augment natural recruitment. Because of the equilibrium assumptions underlying the models, all the estimates of maximum yield and corresponding levels of effort should be treated with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria (blue-green algae) blooms in water bodies present serious public health issues with attendant economic and ecological impacts. Llyn Tegid (Lake Bala) is an important conservation and amenity asset within Snowdonia National Park, Wales which since the mid-1990s has experienced multiple toxic cyanobacteria blooms threatening the ecology and tourism-dependent local economy. Multiple working hypotheses explain the emergence of this problem, including climate change, land management linked to increased nutrient flux, hydromorphological alterations or changing trophic structure - any of which may operate individually or cumulatively to impair lake function. This paper reports the findings of a sedimentfingerprinting study using dated lake cores to explore the linkages between catchment and lake management practices and the emergence of the algal blooms problem. Since 1900 AD lake bed sedimentation rates have varied from 0.06 to 1.07 g cm−2 yr−1, with a pronounced acceleration since the early 1980s. Geochemical analysis revealed increases in the concentrations of total phosphorus (TP), calcium and heavy metals such as zinc and lead consistent with eutrophication and a rising pollution burden, particularly since the late 1970s. An uncertainty-inclusive sedimentfingerprinting approach was used to apportion the relative fluxes from the major catchment land cover types of improved pasture, rough grazing, forestry and channel banks. This showed improved pasture and channel banks are the dominant diffuse sources of sediment in the catchment, though forestry sources were important historically. Conversion of rough grazing to improved grassland, coupled with intensified land management and year-round livestock grazing, is concluded to provide the principal source of rising TP levels. Lake Habitat Survey and particle size analysis of lake cores demonstrate the hydromorphological impact of the River Dee Regulation Scheme, which controls water level and periodically diverts flow into Llyn Tegid from the adjacent Afon Tryweryn catchment. This hydromorphological impact has also been most pronounced since the late 1970s. It is concluded that an integrated approach combining land management to reduce agricultural runoff allied to improved water level regulation enabling recovery of littoral macrophytes offers the greatest chance halting the on-going cyanobacteria issue in Llyn Tegid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal estimation (OE) and probabilistic cloud screening were developed to provide lake surface water temperature (LSWT) estimates from the series of (advanced) along-track scanning radiometers (ATSRs). Variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. Therefore, the OE retrieval scheme developed is generic (i.e., applicable to all lakes). LSWTs were obtained for 258 of Earth's largest lakes from ATSR-2 and AATSR imagery from 1995 to 2009. Comparison to in situ observations from several lakes yields satellite in situ differences of −0.2 ± 0.7 K for daytime and −0.1 ± 0.5 K for nighttime observations (mean ± standard deviation). This compares with −0.05 ± 0.8 K for daytime and −0.1 ± 0.9 K for nighttime observations for previous methods based on operational sea surface temperature algorithms. The new approach also increases coverage (reducing misclassification of clear sky as cloud) and exhibits greater consistency between retrievals using different channel–view combinations. Empirical orthogonal function (EOF) techniques were applied to the LSWT retrievals (which contain gaps due to cloud cover) to reconstruct spatially and temporally complete time series of LSWT. The new LSWT observations and the EOF-based reconstructions offer benefits to numerical weather prediction, lake model validation, and improve our knowledge of the climatology of lakes globally. Both observations and reconstructions are publically available from http://hdl.handle.net/10283/88.