4 resultados para Flood control.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The quality control, validation and verification of the European Flood Alert System (EFAS) are described. EFAS is designed as a flood early warning system at pan-European scale, to complement national systems and provide flood warnings more than 2 days before a flood. On average 20–30 alerts per year are sent out to the EFAS partner network which consists of 24 National hydrological authorities responsible for transnational river basins. Quality control of the system includes the evaluation of the hits, misses and false alarms, showing that EFAS has more than 50% of the time hits. Furthermore, the skills of both the meteorological as well as the hydrological forecasts are evaluated, and are included here for a 10-year period. Next, end-user needs and feedback are systematically analysed. Suggested improvements, such as real-time river discharge updating, are currently implemented.
Resumo:
Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In recent years, the potential role of planned, internal resettlement as a climate change adaptation measure has been highlighted by national governments and the international policy community. However, in many developing countries, resettlement is a deeply political process that often results in an unequal distribution of costs and benefits amongst relocated persons. This paper examines these tensions in Mozambique, drawing on a case study of flood-affected communities in the Lower Zambezi River valley. It takes a political ecology approach – focusing on discourses of human-environment interaction, as well as the power relationships that are supported by such discourses – to show how a dominant narrative of climate change-induced hazards for small-scale farmers is contributing to their involuntary resettlement to higher-altitude, less fertile areas of land. These forced relocations are buttressed by a series of wider economic and political interests in the Lower Zambezi River region, such dam construction for hydroelectric power generation and the extension of control over rural populations, from which resettled people derive little direct benefit. Rather than engaging with these challenging issues, most international donors present in the country accept the ‘inevitability’ of extreme weather impacts and view resettlement as an unfortunate and, in some cases, necessary step to increase people’s ‘resilience’, thus rationalising the top-down imposition of unpopular social policies. The findings add weight to the argument that a depoliticised interpretation of climate change can deflect attention away from underlying drivers of vulnerability and poverty, as well as obscure the interests of governments that are intent on reordering poor and vulnerable populations.
Resumo:
Heavy precipitation affected Central Europe in May/June 2013, triggering damaging floods both on the Danube and the Elbe rivers. Based on a modelling approach with COSMO-CLM, moisture fluxes, backward trajectories, cyclone tracks and precipitation fields are evaluated for the relevant time period 30 May–2 June 2013. We identify potential moisture sources and quantify their contribution to the flood event focusing on the Danube basin through sensitivity experiments: Control simulations are performed with undisturbed ERA-Interim boundary conditions, while multiple sensitivity experiments are driven with modified evaporation characteristics over selected marine and land areas. Two relevant cyclones are identified both in reanalysis and in our simulations, which moved counter-clockwise in a retrograde path from Southeastern Europe over Eastern Europe towards the northern slopes of the Alps. The control simulations represent the synoptic evolution of the event reasonably well. The evolution of the precipitation event in the control simulations shows some differences in terms of its spatial and temporal characteristics compared to observations. The main precipitation event can be separated into two phases concerning the moisture sources. Our modelling results provide evidence that the two main sources contributing to the event were the continental evapotranspiration (moisture recycling; both phases) and the North Atlantic Ocean (first phase only). The Mediterranean Sea played only a minor role as a moisture source. This study confirms the importance of continental moisture recycling for heavy precipitation events over Central Europe during the summer half year.