12 resultados para Floating Point Library
em CentAUR: Central Archive University of Reading - UK
Resumo:
IEEE 754 floating-point arithmetic is widely used in modern, general-purpose computers. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. Modifying the IEEE arithmetic so that it uses transreal arithmetic has a number of advantages. It removes one redundant binade from IEEE floating-point objects, doubling the numerical precision of the arithmetic. It removes eight redundant, relational,floating-point operations and removes the redundant total order operation. It replaces the non-reflexive, floating-point, equality operator with a reflexive equality operator and it indicates that some of the exceptions may be removed as redundant { subject to issues of backward compatibility and transient future compatibility as programmers migrate to the transreal paradigm.
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.
Resumo:
This paper proposes a set of well defined steps to design functional verification monitors intended to verify Floating Point Units (FPU) described in HDL. The first step consists on defining the input and output domain coverage. Next, the corner cases are defined. Finally, an already verified reference model is used in order to test the correctness of the Device Under Verification (DUV). As a case study a monitor for an IEEE754-2008 compliant design is implemented. This monitor is built to be easily instantiated into verification frameworks such as OVM. Two different designs were verified reaching complete input coverage and successful compliant results.
Resumo:
Empirical mode decomposition (EMD) is a data-driven method used to decompose data into oscillatory components. This paper examines to what extent the defined algorithm for EMD might be susceptible to data format. Two key issues with EMD are its stability and computational speed. This paper shows that for a given signal there is no significant difference between results obtained with single (binary32) and double (binary64) floating points precision. This implies that there is no benefit in increasing floating point precision when performing EMD on devices optimised for single floating point format, such as graphical processing units (GPUs).
Resumo:
The transreal numbers are a total number system in which even, arithmetical operation is well defined even-where. This has many benefits over the real numbers as a basis for computation and, possibly, for physical theories. We define the topology of the transreal numbers and show that it gives a more coherent interpretation of two's complement arithmetic than the conventional integer model. Trans-two's-complement arithmetic handles the infinities and 0/0 more coherently, and with very much less circuitry, than floating-point arithmetic. This reduction in circuitry is especially beneficial in parallel computers, such as the Perspex machine, and the increase in functionality makes Digital Signal Processing chips better suited to general computation.
Resumo:
The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.
Resumo:
Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.
Resumo:
Mathematics in Defence 2011 Abstract. We review transreal arithmetic and present transcomplex arithmetic. These arithmetics have no exceptions. This leads to incremental improvements in computer hardware and software. For example, the range of real numbers, encoded by floating-point bits, is doubled when all of the Not-a-Number(NaN) states, in IEEE 754 arithmetic, are replaced with real numbers. The task of programming such systems is simplified and made safer by discarding the unordered relational operator,leaving only the operators less-than, equal-to, and greater than. The advantages of using a transarithmetic in a computation, or transcomputation as we prefer to call it, may be had by making small changes to compilers and processor designs. However, radical change is possible by exploiting the reliability of transcomputations to make pipelined dataflow machines with a large number of cores. Our initial designs are for a machine with order one million cores. Such a machine can complete the execution of multiple in-line programs each clock tick
A benchmark-driven modelling approach for evaluating deployment choices on a multi-core architecture
Resumo:
The complexity of current and emerging architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven model is developed for a simple shallow water code on a Cray XE6 system, to explore how deployment choices such as domain decomposition and core affinity affect performance. The resource sharing present in modern multi-core architectures adds various levels of heterogeneity to the system. Shared resources often includes cache, memory, network controllers and in some cases floating point units (as in the AMD Bulldozer), which mean that the access time depends on the mapping of application tasks, and the core's location within the system. Heterogeneity further increases with the use of hardware-accelerators such as GPUs and the Intel Xeon Phi, where many specialist cores are attached to general-purpose cores. This trend for shared resources and non-uniform cores is expected to continue into the exascale era. The complexity of these systems means that various runtime scenarios are possible, and it has been found that under-populating nodes, altering the domain decomposition and non-standard task to core mappings can dramatically alter performance. To find this out, however, is often a process of trial and error. To better inform this process, a performance model was developed for a simple regular grid-based kernel code, shallow. The code comprises two distinct types of work, loop-based array updates and nearest-neighbour halo-exchanges. Separate performance models were developed for each part, both based on a similar methodology. Application specific benchmarks were run to measure performance for different problem sizes under different execution scenarios. These results were then fed into a performance model that derives resource usage for a given deployment scenario, with interpolation between results as necessary.
Resumo:
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.