13 resultados para Fishing -- Catalonia -- Palamós
em CentAUR: Central Archive University of Reading - UK
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods—Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
A working report for the Department of Agriculture and Fisheries, Scotland, Marine Laboratory Aberdeen
Resumo:
The general focus of this paper is the regional estimation of marginal benefits of targeted water pollution abatement to instream uses. Benefit estimates are derived from actual consumer choices of recreational fishing activities and the implied expenditures for various levels of water quality. The methodology is applied to measuring the benefits accruing to recreational anglers in Indiana from the abatement of pollutants that are by-products of agricultural crop production.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods— Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.