123 resultados para Finite-depth Aquifer
em CentAUR: Central Archive University of Reading - UK
Resumo:
We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.
Resumo:
We prove that for a large class of vorticity functions the crests of any corresponding traveling gravity water wave of finite depth are necessarily points of maximal horizontal velocity. We also show that for waves with nonpositive vorticity the pressure everywhere in the fluid is larger than the atmospheric pressure. A related a priori estimate for waves with nonnegative vorticity is also given.
Resumo:
A periodic structure of finite extent is embedded within an otherwise uniform two-dimensional system consisting of finite-depth fluid covered by a thin elastic plate. An incident harmonic flexural-gravity wave is scattered by the structure. By using an approximation to the corresponding linearised boundary value problem that is based on a slowly varying structure in conjunction with a transfer matrix formulation, a method is developed that generates the whole solution from that for just one cycle of the structure, providing both computational savings and insight into the scattering process. Numerical results show that variations in the plate produce strong resonances about the ‘Bragg frequencies’ for relatively few periods. We find that certain geometrical variations in the plate generate these resonances above the Bragg value, whereas other geometries produce the resonance below the Bragg value. The familiar resonances due to periodic bed undulations tend to be damped by the plate.
Resumo:
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Resumo:
The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics
Resumo:
The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.
Resumo:
Water table response to rainfall was investigated at six sites in the Upper, Middle and Lower Chalk of southern England. Daily time series of rainfall and borehole water level were cross-corretated to investigate seasonal variations in groundwater-level response times, based on periods of 3-month duration. The time tags (in days) yielding significant correlations were compared with the average unsaturated zone thickness during each 3-month period. In general, for cases when the unsaturated zone was greater than 18 m thick, the time tag for a significant water-level response increased rapidly once the depth to the water table exceeded a critical value, which varied from site to site. For shallower water tables, a linear relationship between the depth to the water table and the water-level response time was evident. The observed variations in response time can only be partially accounted for using a diffusive model for propagation through the unsaturated matrix, suggesting that some fissure flow was occurring. The majority of rapid responses were observed during the winter/spring recharge period, when the unsaturated zone is thinnest and the unsaturated zone moisture content is highest, and were more likely to occur when the rainfall intensity exceeded 5 mm/day. At some sites, a very rapid response within 24 h of rainfall was observed in addition to the longer term responses even when the unsaturated zone was up to 64 m thick. This response was generally associated with the autumn period. The results of the cross-correlation analysis provide statistical support for the presence of fissure flow and for the contribution of multiple pathways through the unsaturated zone to groundwater recharge. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite-element velocity/surface-elevation pairs that are used to approximate the linear shallow-water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0-P1, RT0 and P-P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results.