18 resultados para Finite analysis
em CentAUR: Central Archive University of Reading - UK
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?
Resumo:
This paper shows the process of the virtual production development of the mechanical connection between the top leaf of a dual composite leaf spring system to a shackle using finite element methods. The commercial FEA package MSC/MARC has been used for the analysis. In the original design the joint was based on a closed eye-end. Full scale testing results showed that this configuration achieved the vertical proof load of 150 kN and 1 million cycles of fatigue load. However, a problem with delamination occurred at the interface between the fibres going around the eye and the main leaf body. To overcome this problem, a second design was tried using transverse bandages of woven glass fibre reinforced tape to wrap the section that is prone to delaminate. In this case, the maximum interlaminar shear stress was reduced by a certain amount but it was still higher than the material’s shear strength. Based on the fact that, even with delamination, the top leaf spring still sustained the maximum static and fatigue loads required, the third design was proposed with an open eye-end, eliminating altogether the interface where the maximum shear stress occurs. The maximum shear stress predicted by FEA is reduced significantly and a safety factor of around 2 has been obtained. Thus, a successful and safe design has been achieved.
Resumo:
We introduce transreal analysis as a generalisation of real analysis. We find that the generalisation of the real exponential and logarithmic functions is well defined for all transreal numbers. Hence, we derive well defined values of all transreal powers of all non-negative transreal numbers. In particular, we find a well defined value for zero to the power of zero. We also note that the computation of products via the transreal logarithm is identical to the transreal product, as expected. We then generalise all of the common, real, trigonometric functions to transreal functions and show that transreal (sin x)/x is well defined everywhere. This raises the possibility that transreal analysis is total, in other words, that every function and every limit is everywhere well defined. If so, transreal analysis should be an adequate mathematical basis for analysing the perspex machine - a theoretical, super-Turing machine that operates on a total geometry. We go on to dispel all of the standard counter "proofs" that purport to show that division by zero is impossible. This is done simply by carrying the proof through in transreal arithmetic or transreal analysis. We find that either the supposed counter proof has no content or else that it supports the contention that division by zero is possible. The supposed counter proofs rely on extending the standard systems in arbitrary and inconsistent ways and then showing, tautologously, that the chosen extensions are not consistent. This shows only that the chosen extensions are inconsistent and does not bear on the question of whether division by zero is logically possible. By contrast, transreal arithmetic is total and consistent so it defeats any possible "straw man" argument. Finally, we show how to arrange that a function has finite or else unmeasurable (nullity) values, but no infinite values. This arithmetical arrangement might prove useful in mathematical physics because it outlaws naked singularities in all equations.
Resumo:
The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.
Resumo:
Background. Meta-analyses show that cognitive behaviour therapy for psychosis (CBT-P) improves distressing positive symptoms. However, it is a complex intervention involving a range of techniques. No previous study has assessed the delivery of the different elements of treatment and their effect on outcome. Our aim was to assess the differential effect of type of treatment delivered on the effectiveness of CBT-P, using novel statistical methodology. Method. The Psychological Prevention of Relapse in Psychosis (PRP) trial was a multi-centre randomized controlled trial (RCT) that compared CBT-P with treatment as usual (TAU). Therapy was manualized, and detailed evaluations of therapy delivery and client engagement were made. Follow-up assessments were made at 12 and 24 months. In a planned analysis, we applied principal stratification (involving structural equation modelling with finite mixtures) to estimate intention-to-treat (ITT) effects for subgroups of participants, defined by qualitative and quantitative differences in receipt of therapy, while maintaining the constraints of randomization. Results. Consistent delivery of full therapy, including specific cognitive and behavioural techniques, was associated with clinically and statistically significant increases in months in remission, and decreases in psychotic and affective symptoms. Delivery of partial therapy involving engagement and assessment was not effective. Conclusions. Our analyses suggest that CBT-P is of significant benefit on multiple outcomes to patients able to engage in the full range of therapy procedures. The novel statistical methods illustrated in this report have general application to the evaluation of heterogeneity in the effects of treatment.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.
Resumo:
In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.
Resumo:
We prove essential self-adjointness of a class of Dirichlet operators in ℝn using the hyperbolic equation approach. This method allows one to prove essential self-adjointness under minimal conditions on the logarithmic derivative of the density and a condition of Muckenhoupt type on the density itself.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model