47 resultados para Field of View.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Liquid clouds play a profound role in the global radiation budget but it is difficult to remotely retrieve their vertical profile. Ordinary narrow field-of-view (FOV) lidars receive a strong return from such clouds but the information is limited to the first few optical depths. Wideangle multiple-FOV lidars can isolate radiation scattered multiple times before returning to the instrument, often penetrating much deeper into the cloud than the singly-scattered signal. These returns potentially contain information on the vertical profile of extinction coefficient, but are challenging to interpret due to the lack of a fast radiative transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast forward model based on the time-dependent two-stream approximation, and its adjoint. Application of the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint width of 600m suggests that this approach should be able to retrieve the extinction structure down to an optical depth of around 6, and total opticaldepth up to at least 35, depending on the maximum lidar FOV. The convergence behavior of Gauss-Newton and quasi-Newton optimization schemes are compared. We then present results from an application of the algorithm to observations of stratocumulus by the 8-FOV airborne “THOR” lidar. It is demonstrated how the averaging kernel can be used to diagnose the effective vertical resolution of the retrieved profile, and therefore the depth to which information on the vertical structure can be recovered. This work enables exploitation of returns from spaceborne lidar and radar subject to multiple scattering more rigorously than previously possible.
Resumo:
Research in construction management is diverse in content and in quality. There is much to be learned from more fundamental disciplines. Construction is a sub-set of human experience rather than a completely separate phenomenon. Therefore, it is likely that there are few problems in construction requiring the invention of a completely new theory. If construction researchers base their work only on that of other construction researchers, our academic community will become less relevant to the world at large. The theories that we develop or test must be of wider applicability to be of any real interest. In undertaking research, researchers learn a lot about themselves. Perhaps the only difference between research and education is that if we are learning about something which no-one else knows, then it is research, otherwise it is education. Self-awareness of this will help to reduce the chances of publishing work which only reveals a researcher’s own learning curve. Scientific method is not as simplistic as non-scientists claim and is the only real way of overcoming methodological weaknesses in our work. The reporting of research may convey the false impression that it is undertaken in the sequence in which it is written. Construction is not so unique and special as to require a completely different set of methods from other fields of enquiry. Until our research is reported in mainstream journals and conferences, there is little chance that we will influence the wider academic community and a concomitant danger that it will become irrelevant. The most useful insights will come from research which challenges the current orthodoxy rather than research which merely reports it.
Resumo:
Research in construction management is diverse in content and in quality. There is much to be learned from more fundamental disciplines. Construction is a sub-set of human experience rather than a completely separate phenomenon. Therefore, it is likely that there are few problems in construction requiring the invention of a completely new theory. If construction researchers base their work only on that of other construction researchers, our academic community will become less relevant to the world at large. The theories that we develop or test must be of wider applicability to be of any real interest. In undertaking research, researchers learn a lot about themselves. Perhaps the only difference between research and education is that if we are learning about something which no-one else knows, then it is research, otherwise it is education. Self-awareness of this will help to reduce the chances of publishing work which only reveals a researcher’s own learning curve. Scientific method is not as simplistic as non-scientists claim and is the only real way of overcoming methodological weaknesses in our work. The reporting of research may convey the false impression that it is undertaken in the sequence in which it is written. Construction is not so unique and special as to require a completely different set of methods from other fields of enquiry. Until our research is reported in mainstream journals and conferences, there is little chance that we will influence the wider academic community and a concomitant danger that it will become irrelevant. The most useful insights will come from research which challenges the current orthodoxy rather than research which merely reports it.
Resumo:
The harmonic and anharmonic force field of acetylene has been determined in a least-squares calculation from recently determined data on the spectroscopic constants of various isotopic species (including the vibrational l-doubling constant). A general quadratic and cubic force field was used, but a constrained quartic force field containing only 8 of the 23 possible quartic constants. The results are discussed and compared with earlier work.
Resumo:
The J = 2−1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant. The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) Å, re(SiF) = 1.5624(±1) Å, HSiF = 110.64(±3)°,
Resumo:
The quadratic, cubic, and quartic force field of HCN has been calculated by a least squares refinement to fit the most recent observed data on the vibration-rotation constants of HCN, DCN and H13CN. All of the observed parameters are fitted within their standard errors of observation. The corresponding parameters for other isotopic species are calculated. For HCP and DCP the more limited data available have been fitted to an anharmonic force field using constraints based on comparison with HCN. Using this force field the zero-point rotational constants B0 have been corrected to obtain the equilibrium constants Be, and hence the equilibrium structure has been determined to be re(CH) = 1•0692(7)A, and re(CP) = 1•5398(2)A.
Resumo:
Vibration-rotation spectra of HOCl have been measured at a resolution of 0.05 cm−1 to determine vibration rotation constants, and 35–37 Cl isotope shifts in the vibration frequencies. The spectrum of DOCl has also been recorded, and a preliminary analysis for the band origins has been made. The vibrational frequency data and centrifugal distortion constants have been used to determine the harmonic force field in a least-squares refinement; the force field obtained also gives a good fit to data on the vibrational contributions to the inertial defect. The equilibrium rotational constants of HOCl have been obtained, and an equilibrium structure has been estimated.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.
Resumo:
The complete general harmonic force field of methyl flouride was recalculated using the most recent literature frequency, Coriolis ζ, and centrifugal distortion data for 12CH3F, 13CH3F, 12CD3F, 12CHD2F and 12CH2DF. The anharmonic corrections applied to the observed frequency data and the adopted molecular geometry are considered to be more realistic than those used hitherto. There is excellent overall agreement between the fitted force constants and the highest quality ab initio force field currently available.
Resumo:
We present results from 30 nights of observations of the open cluster NGC 7789 with the Wide Field Camera on the Isaac Newton Telescope, La Palma. From ~900 epochs, we obtained light curves and Sloan r'-i' colours for ~33000 stars, with ~2400 stars having better than 1 per cent precision. We expected to detect ~2 transiting hot Jupiter planets if 1 per cent of stars host such a companion and a typical hot Jupiter radius is ~1.2R_J. We find 24 transit candidates, 14 of which we can assign a period. We rule out the transiting planet model for 21 of these candidates using various robust arguments. For two candidates, we are unable to decide on their nature, although it seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting a single eclipse, for which we derive a radius of 1.81+0.09-0.00R_J. Three candidates remain that require follow-up observations in order to determine their nature.
Resumo:
We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.
Resumo:
Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.
Resumo:
During the last 30 years, significant debate has taken place regarding multilevel research. However, the extent to which multilevel research is overtly practiced remains to be examined. This article analyzes 10 years of organizational research within a multilevel framework (from 2001 to 2011). The goals of this article are (a) to understand what has been done, during this decade, in the field of organizational multilevel research and (b) to suggest new arenas of research for the next decade. A total of 132 articles were selected for analysis through ISI Web of Knowledge. Through a broad-based literature review, results suggest that there is equilibrium between the amount of empirical and conceptual papers regarding multilevel research, with most studies addressing the cross-level dynamics between teams and individuals. In addition, this study also found that the time still has little presence in organizational multilevel research. Implications, limitations, and future directions are addressed in the end. Organizations are made of interacting layers. That is, between layers (such as divisions, departments, teams, and individuals) there is often some degree of interdependence that leads to bottom-up and top-down influence mechanisms. Teams and organizations are contexts for the development of individual cognitions, attitudes, and behaviors (top-down effects; Kozlowski & Klein, 2000). Conversely, individual cognitions, attitudes, and behaviors can also influence the functioning and outcomes of teams and organizations (bottom-up effects; Arrow, McGrath, & Berdahl, 2000). One example is when the rewards system of one organization may influence employees’ intention to quit and the existence or absence of extra role behaviors. At the same time, many studies have showed the importance of bottom-up emergent processes that yield higher level phenomena (Bashshur, Hernández, & González-Romá, 2011; Katz-Navon & Erez, 2005; Marques-Quinteiro, Curral, Passos, & Lewis, in press). For example, the affectivity of individual employees may influence their team’s interactions and outcomes (Costa, Passos, & Bakker, 2012). Several authors agree that organizations must be understood as multilevel systems, meaning that adopting a multilevel perspective is fundamental to understand real-world phenomena (Kozlowski & Klein, 2000). However, whether this agreement is reflected in practicing multilevel research seems to be less clear. In fact, how much is known about the quantity and quality of multilevel research done in the last decade? The aim of this study is to compare what has been proposed theoretically, concerning the importance of multilevel research, with what has really been empirically studied and published. First, this article outlines a review of the multilevel theory, followed by what has been theoretically “put forward” by researchers. Second, this article presents what has really been “practiced” based on the results of a review of multilevel studies published from 2001 to 2011 in business and management journals. Finally, some barriers and challenges to true multilevel research are suggested. This study contributes to multilevel research as it describes the last 10 years of research. It quantitatively depicts the type of articles being written, and where we can find the majority of the publications on empirical and conceptual work related to multilevel thinking.