62 resultados para Fiction 20th century Technique

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixture model techniques are applied to a daily index of monsoon convection from ERA‐40 reanalysis to show regime behavior. The result is the existence of two significant regimes showing preferred locations of convection within the Asia/Western‐North Pacific domain, with some resemblance to active‐break events over India. Simple trend analysis over 1958–2001 shows that the first regime has become less frequent while the second becomes much more dominant. Both undergo a change in structure contributing to the total OLR trend over the ERA‐40 period. Stratifying the data according to a large‐scale dynamical index of monsoon interannual variability, we show the regime occurrence to be strongly perturbed by the seasonal condition, in agreement with conceptual ideas. This technique could be used to further examine predictability issues relating the seasonal mean and intraseasonal monsoon variability or to explore changes in monsoon behavior in centennial‐scale model integrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glaciers occupy an area of similar to 1600 km(2) in the Caucasus Mountains. There is widespread evidence of retreat since the Little Ice Age, but an up-to-date regional assessment of glacier change is lacking. In this paper, satellite imagery (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus) is used to obtain the terminus position of 113 glaciers in the central Caucasus in 1985 and 2000, using a manual delineation process based on a false-colour composite (bands 5, 4, 3). Measurements reveal that 94% of the glaciers have retreated, 4% exhibited no overall change and 2% advanced. The mean retreat rate equates to similar to 8 m a(-1), and maximum retreat rates approach similar to 38 m a(-1). The largest (>10 km(2)) glaciers retreated twice as much (similar to 12 m a(-1)) as the smallest (<1 km(2)) glaciers (similar to 6 m a(-1)), and glaciers at lower elevations generally retreated greater distances. Supraglacial debris cover has increased in association with glacier retreat, and the surface area of bare ice has reduced by similar to 10% between 1985 and 2000. Results are compared to declassified Corona imagery from the 1960s and 1970s and detailed field measurements and mass-balance data for Djankuat glacier, central Caucasus. It is concluded that the decrease in glacier area appears to be primarily driven by increasing temperatures since the 1970s and especially since the mid-1990s. Continued retreat could lead to considerable changes in glacier runoff, with implications for regional water resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines changes in the surface area of glaciers in the North and South Chuya Ridges, Altai Mountains in 1952-2004 and their links with regional climatic variations. The glacier surface areas for 2004 were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Data from the World Glacier Inventory (WGI)dating to 1952 and aerial photographs from 1952 were used to estimate the changes. 256 glaciers with a combined area of 253±5.1 km2 have been identified in the region in 2004. Estimation of changes in extent of 126 glaciers with the individual areas not less than 0.5 km2 in 1952 revealed a 19.7±5.8% reduction. The observed glacier retreat is primarily driven by an increase in summer temperatures since the 1980s when air temperatures were increasing at a rate of 0.10 - 0.13oC a-1 at the glacier tongue elevation. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in the Altai in 2071-2100 by 6-7oC and 3-5oC respectively in comparison with 1961-1990 while annual precipitation will increase by 15% and 5%. The length of the ablation season will extend from June-August to the late April – early October. The projected increases in precipitation will not compensate for the projected warming and glaciers will continue to retreat in the 21st century under both B2 and A2 scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapters contributed by experts on each period examine how world views have determined the view of war and peace, and the conduct of war, throughout European history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian summer monsoon is a high dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40) sea-level pressure (SLP) anomalies to the seasonal cycle, over the region 50-145°E, 20°S-35°N to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the Western North Pacific. Using the low-level wind field anomalies the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet whereas during the break phase the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also plays a role in declining monsoon rainfall. The disparity between the response of monsoon rainfall to increasing aerosol emissions in models containing direct aerosol effects only and those also containing indirect effects needs to be urgently investigated since the suggested future decline in Asian anthropogenic aerosol emissions inherent to the representative concentration pathways (RCPs) used for future climate projection may turn out to be optimistic. In addition, both groups of models show declining rainfall over China, also relating to local aerosol mechanisms. We hypothesize that aerosol emissions over China are large enough, in the CMIP5 models, to cause declining monsoon rainfall even in the absence of indirect aerosol effects. The same is not true for India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey-Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km(2) reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943-1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02-0.03 degrees Ca-1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the 20th century, solar activity increased in magnitude to a so-called grand maximum. It is probable that this high level of solar activity is at or near its end. It is of great interest whether any future reduction in solar activity could have a significant impact on climate that could partially offset the projected anthropogenic warming. Observations and reconstructions of solar activity over the last 9000 years are used as a constraint on possible future variations to produce probability distributions of total solar irradiance over the next 100 years. Using this information, with a simple climate model, we present results of the potential implications for future projections of climate on decadal to multidecadal timescales. Using one of the most recent reconstructions of historic total solar irradiance, the likely reduction in the warming by 2100 is found to be between 0.06 and 0.1 K, a very small fraction of the projected anthropogenic warming. However, if past total solar irradiance variations are larger and climate models substantially underestimate the response to solar variations, then there is a potential for a reduction in solar activity to mitigate a small proportion of the future warming, a scenario we cannot totally rule out. While the Sun is not expected to provide substantial delays in the time to reach critical temperature thresholds, any small delays it might provide are likely to be greater for lower anthropogenic emissions scenarios than for higher-emissions scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical Cyclones (TC) under different climate conditions in the Northern Hemisphere have been investigated with the Max Planck Institute (MPI) coupled (ECHAM5/MPIOM) and atmosphere (ECHAM5) climate models. The intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at the higher resolutions. The typical size of the TC is reduced by a factor of 2.3 from T63 to T319 using the distance of the maximum wind speed from the centre of the storm as a measure. The full three dimensional structure of the storms becomes increasingly more realistic as the resolution is increased. For the T63 resolution, three ensemble runs are explored for the period 1860 until 2100 using the IPCC SRES scenario A1B and evaluated for three 30 year periods at the end of the 19th, 20th and 21st century, respectively. While there is no significant change between the 19th and the 20th century, there is a considerable reduction in the number of the TC by some 20% in the 21st century, but no change in the number of the more intense storms. Reduction in the number of storms occurs in all regions. A single additional experiment at T213 resolution was run for the two latter 30-year periods. The T213 is an atmospheric only experiment using the transient Sea Surface Temperatures (SST) of the T63 resolution experiment. Also in this case, there is a reduction by some 10% in the number of simulated TC in the 21st century compared to the 20th century but a marked increase in the number of intense storms. The number of storms with maximum wind speeds greater than 50ms-1 increases by a third. Most of the intensification takes place in 2 the Eastern Pacific and in the Atlantic where also the number of storms more or less stays the same. We identify two competing processes effecting TC in a warmer climate. First, the increase in the static stability and the reduced vertical circulation is suggested to contribute to the reduction in the number of storms. Second, the increase in temperature and water vapor provide more energy for the storms so that when favorable conditions occur, the higher SST and higher specific humidity will contribute to more intense storms. As the maximum intensity depends crucially on resolution, this will require higher resolution to have its full effect. The distribution of storms between different regions does not, at first approximation, depend on the temperature itself but on the distribution of the SST anomalies and their influence on the atmospheric circulation. Two additional transient experiments at T319 resolution where run for 20 years at the end of the 20th and 21st century, respectively using the same conditions as in the T213 experiments. The results are consistent with the T213 study. The total number of tropical cyclones were similar to the T213 experiment but were generally more intense. The change from the 20th to the 21st century was also similar with fewer TC in total but with more intense cyclones.