7 resultados para Feline diabetes mellitus
em CentAUR: Central Archive University of Reading - UK
Resumo:
Knowledge of the differences between the amounts and types of protein that are expressed in diseased compared to healthy subjects may give an understanding of the biological pathways that cause disease. This is the reasoning behind the presented protocol, which uses difference gel electrophoresis to discover up‐ or down‐regulated proteins between mice of different genotypes, or of those fed on different diets, that may thus be prone to develop diabetes‐like phenotypes. Subsequent analysis of these proteins by tandem mass spectrometry typically facilitates their identification with a high degree of confidence.
Resumo:
Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.
Resumo:
Genes play an important role in the development of diabetes mellitus. Putative susceptibility genes could be the key to the development of diabetes. Type 1 diabetes mellitus is one of the most common chronic diseases of childhood. A combination of genetic and environmental factors is most likely the cause of Type 1 diabetes. The pathogenetic sequence leading to the selective autoimmune destruction of islet beta-cells and development of Type 1 diabetes involves genetic factors, environmental factors, immune regulation and chemical mediators. Unlike Type 1 diabetes mellitus, Type 2 diabetes is often considered a polygenic disorder with multiple genes located on different chromosomes being associated with this condition. This is further complicated by numerous environmental factors which also contribute to the clinical manifestation of the disorder in genetically predisposed persons. Only a minority of cases of type 2 diabetes are caused by single gene defects such as maturity onset diabetes of the young (MODY), syndrome of insulin resistance (insulin receptor defect) and maternally inherited diabetes and deafness (mitochondrial gene defect). Although Type 2 diabetes mellitus appears in almost epidemic proportions our knowledge of the mechanism of this disease is limited. More information about insulin secretion and action and the genetic variability of the various factors involved will contribute to better understanding and classification of this group of diseases. This article discusses the results of various genetic studies on diabetes with special reference to Indian population.
Resumo:
The possible relationship between consumption of trans fatty acids (TFAs) and risk of insulin resistance or development of diabetes mellitus type II has been considered by a number of human and animal studies over the past decade. This review evaluates the evidence, and concludes that there is limited evidence for a weak association at high TFA intakes, but very little convincing evidence that habitual exposure as part of a standard western diet has a significant contribution to risk of diabetes or insulin resistance. The possibility of increased risk for individuals with particular genotypes (such as the FABP2 Thr54 allele) is of interest, but further work would be required to provide sufficient evidence of any association.
Resumo:
The Gulf is experiencing a pandemic of lifestyle-induced obesity and type 2 diabetes mellitus (T2DM), with rates exceeding 50 and 30%, respectively. It is likely that T2DM represents the tip of a very large metabolic syndrome iceberg, which precedes T2DM by many years and is associated with abnormal/ectopic fat distribution, pathological systemic oxidative stress and inflammation. However, the definitions are still evolving with the role of different fat depots being critical. Hormetic stimuli, which include exercise, calorie restriction, temperature extremes, dehydration and even some dietary components (such as plant polyphenols), may well modulate fat deposition. All induce physiological levels of oxidative stress, which results in mitochondrial biogenesis and increased anti-oxidant capacity, improving metabolic flexibility and the ability to deal with lipids. We propose that the Gulf Metabolic Syndrome results from an unusually rapid loss of hormetic stimuli within an epigenetically important time frame of 2-3 generations. Epigenetics indicates that thriftiness can be programmed by the environment and passed down through several generations. Thus this loss of hormesis can result in continuation of metabolic inflexibility, with mothers exposing the foetus to a milieu that perpetuates a stressed epigenotype. As the metabolic syndrome increases oxidative stress and reduces life expectancy, a better descriptor may therefore be the Lifestyle-Induced Metabolic Inflexibility and accelerated AGEing syndrome – LIMIT-AGE. As life expectancy in the Gulf begins to fall, with perhaps a third of this life being unhealthy – including premature loss of sexual function, it is vital to detect evidence of this condition as early in life as possible. One effective way to do this is by detecting evidence of metabolic inflexibility by studying body fat content and distribution by magnetic resonance (MR). The Gulf Metabolic Syndrome thus represents an accelerated form of the metabolic syndrome induced by the unprecedented rapidity of lifestyle change in the region, the stress of which is being passed from generation to generation and may be accumulative. The fundamental cause is probably due to a rapid increase in countrywide wealth. This has benefited most socioeconomic groups, resulting in the development of an obesogenic environment as the result of the rapid adoption of Western labour saving and stress relieving devices (e.g. cars and air conditioning), as well as the associated high calorie diet.