11 resultados para Fed-batch process

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimized (80.2 g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2 g/L with microbial oil content of 61.8 % (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2 – 17.6 g/L led to the highest productivity (0.32 g/L∙h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rapeseed meal (RSM) hydrolysate was evaluated as substitute for commercial nutrient supplements in 1,3-propanediol (PDO) fermentation using the strain Clostridium butyricum VPI 1718. RSM was enzymatically converted into a generic fermentation feedstock, enriched in amino acids, peptides and various micro-nutrients, using crude enzyme consortia produced via solid state fermentation by a fungal strain of Aspergillus oryzae. Initial free amino nitrogen concentration influenced PDO production in batch cultures. RSM hydrolysates were compared with commercial nutrient supplements regarding PDO production in fed-batch cultures carried out in a bench-scale bioreactor. The utilization of RSM hydrolysates in repeated batch cultivation resulted in a PDO concentration of 65.5 g/L with an overall productivity of 1.15 g/L/h that was almost 2 times higher than the productivity achieved when yeast extract was used as nutrient supplement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under non-aseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% (w/v). However, 4.0% (w/v) of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% (w/w) per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% (w/w) of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value amongst the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for “second generation” biodiesel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain milk factors can promote the growth of a host-friendly gastrointestinal microflora. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. Infant faecal specimens were used to ferment formulas supplemented with glycomacropeptide and α-lactalbumin in a two-stage compound continuous culture model. Bacteriology was determined by fluorescence in situ hybridisation. Vessels that contained breast milk as well as α-lactalbumin and glycomacropeptide had stable counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and Escherichia coli decreased significantly in all runs. Acetate was the principal acid found along with high amounts of propionate and lactate. Supplementation of infant formulas with appropriate milk proteins may be useful in simulating the beneficial bacteriological effects of breast milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of foods have been implicated in symptoms of patients with Irritable Bowel Syndrome (IBS) but wheat products are most frequently cited by patients as a trigger. Our aim was to investigate the effects of breads, which were fermented for different lengths of time, on the colonic microbiota using in vitro batch culture experiments. A set of in vitro anaerobic culture systems were run over a period of 24 h using faeces from 3 different IBS donors (Rome Criteria–mainly constipated) and 3 healthy donors. Changes in gut microbiota during a time course were identified by fluorescence in situ hybridisation (FISH), whilst the small -molecular weight metabolomic profile was determined by NMR analysis. Gas production was separately investigated in non pH-controlled, 36 h batch culture experiments. Numbers of bifidobacteria were higher in healthy subjects compared to IBS donors. In addition, the healthy donors showed a significant increase in bifidobacteria (P<0.005) after 8 h of fermentation of a bread produced using a sourdough process (type C) compared to breads produced with commercial yeasted dough (type B) and no time fermentation (Chorleywood Breadmaking process) (type A). A significant decrease of δ-Proteobacteria and most Gemmatimonadetes species was observed after 24 h fermentation of type C bread in both IBS and healthy donors. In general, IBS donors showed higher rates of gas production compared to healthy donors. Rates of gas production for type A and conventional long fermentation (type B) breads were almost identical in IBS and healthy donors. Sourdough bread produced significantly lower cumulative gas after 15 h fermentation as compared to type A and B breads in IBS donors but not in the healthy controls. In conclusion, breads fermented by the traditional long fermentation and sourdough are less likely to lead to IBS symptoms compared to bread made using the Chorleywood Breadmaking Process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following previous studies, the aim of this work is to further investigate the application of colloidal gas aphrons (CGA) to the recovery of polyphenols from a grape marc ethanolic extract with particular focus on exploring the use of a non-ionic food grade surfactant (Tween 20) as an alternative to the more toxic cationic surfactant CTAB. Different batch separation trials in a flotation column were carried out to evaluate the influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extract volumetric and molar ratio) on the recovery of total and specific phenolic compounds. The possibility of achieving selective separation and concentration of different classes of phenolic compounds and non-phenolic compounds was also assessed, together with the influence of the process on the antioxidant capacity of the recovered compounds. The process led to good recovery, limited loss of antioxidant capacity, but low selectivity under the tested conditions. Results showed the possibility of using Tween 20 with a separation mechanism mainly driven by hydrophobic interactions. Volumetric ratio rather than the molar ratio was the key operating parameter in the recovery of polyphenols by CGA.