8 resultados para Fator carga (fc)
em CentAUR: Central Archive University of Reading - UK
Resumo:
The hemagglutinins (HAs) of human H1 and H3 influenza viruses and avian H5 influenza virus were produced as recombinant fusion proteins with the human immunoglobulin Fc domain. Recombinant HA-human immunoglobulin Fc domain (HA-HuFc) proteins were secreted from baculovirus-infected insect cells as glycosylated oligomer HAs of the anticipated molecular mass, agglutinated red blood cells, were purified on protein A, and were used to immunize mice in the absence of adjuvant. Immunogenicity was demonstrated for all subtypes, with the serum samples demonstrating subtype-specific hemagglutination inhibition, epitope specificity similar to that seen with virus infection, and neutralization. HuFc-tagged HAs are potential candidates for gene-to-vaccine approaches to influenza vaccination.
Resumo:
There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.
Resumo:
We have recently shown that collagen activates platelets through a pathway dependent on the Fc receptor gamma-chain and the tyrosine kinase Syk. We report here that the Fc receptor gamma-chain and the candidate collagen receptor glycoprotein VI (GPVI) co-associate. Furthermore, cross-linking GPVI stimulates a similar pattern of tyrosine phosphorylation to that stimulated by collagen, including tyrosine phosphorylation of Fc receptor gamma-chain. These results support a model where GPVI couples collagen-stimulation of platelets to phosphorylation of the Fc receptor gamma-chain leading to activation of Syk and phospholipase Cgamma2.
Resumo:
Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.
Resumo:
Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.
Resumo:
Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.
Resumo:
Traditional vaccines such as inactivated or live attenuated vaccines, are gradually giving way to more biochemically defined vaccines that are most often based on a recombinant antigen known to possess neutralizing epitopes. Such vaccines can offer improvements in speed, safety and manufacturing process but an inevitable consequence of their high degree of purification is that immunogenicity is reduced through the lack of the innate triggering molecules present in more complex preparations. Targeting recombinant vaccines to antigen presenting cells (APCs) such as dendritic cells however can improve immunogenicity by ensuring that antigen processing is as efficient as possible. Immune complexes, one of a number of routes of APC targeting, are mimicked by a recombinant approach, crystallizable fragment (Fc) fusion proteins, in which the target immunogen is linked directly to an antibody effector domain capable of interaction with receptors, FcR, on the APC cell surface. A number of virus Fc fusion proteins have been expressed in insect cells using the baculovirus expression system and shown to be efficiently produced and purified. Their use for immunization next to non-Fc tagged equivalents shows that they are powerfully immunogenic in the absence of added adjuvant and that immune stimulation is the result of the Fc-FcR interaction.
Resumo:
We identify gAd as a novel ligand for GPVI that stimulates tyrosine kinase-dependent platelet aggregation. Our data raise the possibility that gAd may promote unwanted platelet activation at sites of vascular injury.