4 resultados para Fallon, Wiliam
em CentAUR: Central Archive University of Reading - UK
Resumo:
The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) and data from a coupled climate–carbon cycle general circulation model to investigate the impact of direct heterotrophic respiration dependence on soil moisture on the climate carbon cycle feedback. Global changes in soil moisture acted to oppose temperature‐driven decreases in soil carbon and hence tended to increase soil carbon storage. We found considerable uncertainty in soil carbon changes due to the response of soil respiration to soil moisture. The use of different SMRFs resulted in both large losses and small gains in future global soil carbon stocks, whether considering all climate forcings or only moisture changes. Regionally, the greatest range in soil carbon changes across SMRFs was found where the largest soil carbon changes occurred. Further research is needed to constrain the soil moisture–respiration relationship and thus reduce uncertainty in climate–carbon cycle feedbacks. There may also be considerable uncertainty in the regional responses of soil carbon to soil moisture changes since climate model predictions of regional soil moisture changes are less coherent than temperature changes.
Resumo:
It has been suggested that Assessment for Learning (AfL) plays a significant role in enhancing teaching and learning in mainstream educational contexts. However, little empirical evidence can support these claims. As AfL has been shown to be enacted predominantly through interactions in primary classes, there is a need to understand if it is appropriate, whether it can be efficiently used in teaching English to Young Learners (TEYL) and how it can facilitate learning in such a context. This emerging research focus gains currency especially in the light of SLA research, which suggests the important role of interactions in foreign language learning. This mixed-method, descriptive and exploratory study aims to investigate how teachers of learners aged 7-11 understand AfL; how they implement it; and the impact that such implementation could have on interactions which occur during lessons. The data were collected through lesson observations, scrutiny of school documents, semi-structured interviews and a focus group interview with teachers. The findings indicate that fitness for purpose guides the implementation of AfL in TEYL classrooms. Significantly, the study has revealed differences in the implementation of AfL between classes of 7-9 and 10-11 year olds within each of the three purposes (setting objectives and expectations; monitoring performance; and checking achievement) identified through the data. Another important finding of this study is the empirical evidence suggesting that the use of AfL could facilitate creating conditions conducive to learning in TEYL classes during collaborative and expert/novice interactions. The findings suggest that teachers’ understanding of AfL is largely aligned with the theoretical frameworks (Black & Wiliam, 2009; Swaffield, 2011) already available. However, they also demonstrate that there are TEYL specific characteristics. This research has important pedagogical implications and indicates a number of areas for further research.
Resumo:
Group Exhibition including Auto Italia South East, The Bureau of Melodramatic Research, Torsten Lauschmann, John Russell, Marika Troili. Curated by Benjamin Fallon. Screening of ‘Vermillion Vortex' 2011.
Resumo:
Group exhibition including Capital Reading Group [Andrew Cooper, Enda Deburka, Dean Kenning and John Russell] Lange Nieuwstraat 4 (BAK), curated by Benjamin Fallon.