8 resultados para FOOD COMPETITION
em CentAUR: Central Archive University of Reading - UK
Resumo:
A procedure is presented for comparing hypotheses about competition that makes no parametric assumptions about cost and demand functions, can be implemented with a modicum of data, and relies on Bayesian comparisons of non-nested hypotheses. The methodology is applied to data on five of the major U.S. food industries
Resumo:
Gardner's popular model of perfect competition in the marketing sector is extended to a conjectural-variations oligopoly with endogenous entry. Revising Gardner's comparative statics on the "farm-retail price ratio," tests of hypotheses about food industry conduct are derived. Using data from a recent article by Wohlgenant, which employs Gardner's framework, tests are made of the validity of his maintained hypothesis-that the food industries are perfectly competitive. No evidence is found of departures from competition in the output markets of the food industries of eight commodity groups: (a) beef and veal, (b) pork, (c) poultry, (d) eggs, (e) dairy, (f) processed fruits and vegetables, (g) fresh fruit, and (h) fresh vegetables.
Resumo:
The relationship between price volatility and competition is examined. Atheoretic, vector auto regressions on farm prices of wheat and retail prices of derivatives (flour, bread, pasta, bulgur and cookies) are compared to results from a dynamic, simultaneous-equations model with theory-based farm-to-retail linkages. Analytical results yield insights about numbers of firms and their impacts on demand- and supply-side multipliers, but the applications to Turkish time series (1988:1-1996:12) yield mixed results.
Resumo:
A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future.
Resumo:
We propose the Tetra Pak case as a real-world example to study the implications of multiproduct activity for European Competition Policy. Tetra Pak, a monopolist in aseptic carton packaging of liquid food, competes with Elopak in the nonaseptic sector. The EC Commission used the effect of Tetra Pak's dominance in the aseptic sector on its rival's performance as an evidence of the former's anticompetitive behavior. With linear demand and cost functions and interdependent demands, the Commission's position can be supported. However, a more general model suggests that the Commission's conclusions cannot be supported as the unique outcome of the analysis of the information available.
Resumo:
Direct effects of soil or its constituents on human health are through its ingestion, inhalation or absorption. The soil contains many infectious organisms that may enter the human body through these pathways, but it also provides organisms on which our earliest antibiotics are based. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow. We focus on four trace elements (iodine, iron, selenium and zinc) whose deficiencies have substantial effects on human health. As the world’s population increases issues of food security become more pressing, as does the need to sustain soil fertility and minimize its degradation. Lack of adequate food and food of poor nutritional quality lead to differing degrees of under-nutrition, which in turn causes ill health. Soil and land are finite resources and agricultural land is under severe competition from other uses. Relationships between soil and health are often difficult to extricate because of the many confounding factors present. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil science, agronomy, agricultural sustainability, toxicology, epidemiology and the medical sciences will facilitate the discovery of new antibiotics, a greater understanding of how materials added to soil used for food production affect health and deciphering of the complex relationships between soil and human health.