4 resultados para FOCAL CEREBRAL-ISCHEMIA
em CentAUR: Central Archive University of Reading - UK
Resumo:
Stroke is a major cause of death and disability, which involves excessive glutamate receptor activation leading to excitotoxic cell death. We recently reported that SUMOylation can regulate kainate receptor (KAR) function. Here we investigated changes in protein SUMOylation and levels of KAR and AMPA receptor subunits in two different animal stroke models: a rat model of focal ischemia with reperfusion and a mouse model without reperfusion. In rats, transient middle cerebral artery occlusion (MCAO) resulted in a striatal and cortical infarct. A dramatic increase in SUMOylation by both SUMO-1 and SUMO-2/3 was observed at 6h and 24h in the striatal infarct area and by SUMO-2/3 at 24h in the hippocampus, which was not directly subjected to ischemia. In mice, permanent MCAO resulted in a selective cortical infarct. No changes in SUMOylation occurred at 6h but there was increased SUMO-1 conjugation in the cortical infarct and non-ischemic hippocampus at 24h after MCAO. Interestingly, SUMOylation by SUMO-2/3 occurred only outside the infarct area. In both rat and mouse levels of KARs were only decreased in the infarct regions whereas AMPARs were decreased in the infarct and in other brain areas. These results suggest that posttranslational modification by SUMO and down-regulation of AMPARs and KARs may play important roles in the pathophysiological response to ischemia.
Resumo:
Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.
Resumo:
Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.
Resumo:
Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using noninvasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (N30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2- dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue