25 resultados para FINITE-AMPLITUDE BANKS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Resumo:
The influence of orography on the structure of stationary planetary Rossby waves is studied in the context of a contour dynamics model of the large-scale atmospheric flow. Orography of infinitesimal and finite amplitude is studied using analytical and numerical techniques. Three different types of orography are considered: idealized orography in the form of a global wave, idealized orography in the form of a local table mountain, and the earth's orography. The study confirms the importance of resonances, both in the infinitesimal orography and in the finite orography cases. With finite orography the stationary waves organize themselves into a one-dimensional set of solutions, which due to the resonances, is piecewise connected. It is pointed out that these stationary waves could be relevant for atmospheric regimes.
Resumo:
The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
A theory of available energy for axisymmetric circulations is presented. The theory is a generalization of the classical theory of available potential energy, in that it accounts for both thermal and angular momentum constraints on the circulation. The generalization relies on the Hamiltonian structure of the (conservative) dynamics, is exact at finite amplitude, and has a local form. Application of the theory is presented for the case of an axisymmetric vortex on an f -plane in the context of the Boussinesq equations.
Resumo:
A theory of available potential energy (APE) for symmetric circulations, which includes momentum constraints, is presented. The theory is a generalization of the classical theory of APE, which includes only thermal constraints on the circulation. Physically, centrifugal potential energy is included along with gravitational potential energy. The generalization relies on the Hamiltonian structure of the conservative dynamics, although (as with classical APE) it still defines the energetics in a nonconservative framework. It follows that the theory is exact at finite amplitude, has a local form, and can be applied to a variety of fluid models. It is applied here to the f -plane Boussinesq equations. It is shown that, by including momentum constraints, the APE of a symmetrically stable flow is zero, while the energetics of a mechanically driven symmetric circulation properly reflect its causality.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
The energy–Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Formal stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Finite-amplitude stability conditions are also obtained that provide an upper bound on a certain positive-definite measure of disturbance amplitude.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
Rigorous upper bounds are derived on the saturation amplitude of baroclinic instability in the two-layer model. The bounds apply to the eddy energy and are obtained by appealing to a finite amplitude conservation law for the disturbance pseudoenergy. These bounds are to be distinguished from those derived in Part I of this study, which employed a pseudomomentum conservation law and provided bounds on the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. Bounds on the eddy energy are worked out for a general class of unstable westerly jets. In the special case of the Phillips model of baroclinic instability, and in the limit of infinitesimal initial eddy amplitude, the bound states that the eddy energy cannot exceed ϵβ2/6F where ϵ = (U − Ucrit)/Ucrit is the relative supercriticality. This bound captures the essential dynamical scalings (i.e., the dependence on ϵ, β, and F) of the saturation amplitudes predicted by weakly nonlinear theory, as well as exhibiting remarkable quantitative agreement with those predictions, and is also consistent with heuristic baroclinic adjustment estimates.
Resumo:
Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.
Resumo:
A rigorous bound is derived which limits the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow within the context of the two-layer model. The bound is valid for conservative (unforced) flow, as well as for forced-dissipative flow that when the dissipation is proportional to the potential vorticity. The method used to derive the bound relies on the existence of a nonlinear Liapunov (normed) stability theorem for subcritical flows, which is a finite-amplitude generalization of the Charney-Stern theorem. For the special case of the Philips model of baroclinic instability, and in the limit of infinitesimal initial nonzonal disturbance amplitude, an improved form of the bound is possible which states that the potential enstrophy of the nonzonal flow cannot exceed ϵβ2, where ϵ = (U − Ucrit)/Ucrit is the (relative) supereriticality. This upper bound turns out to be extremely similar to the maximum predicted by the weakly nonlinear theory. For unforced flow with ϵ < 1, the bound demonstrates that the nonzonal flow cannot contain all of the potential enstrophy in the system; hence in this range of initial supercriticality the total flow must remain, in a certain sense, “close” to a zonal state.
Resumo:
A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.