59 resultados para FIELD-PRODUCED WATER

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquid water content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble Kalman filter, radiances are used to constrain the optical properties of the clouds using a forward model that employs full 3-D radiative transfer while also providing full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from a challenging cumulus cloud field produced by a large-eddy simulation snapshot. Uncertainty due to measurement error in overhead clouds is estimated at 20% in LWC and 6% in re, but the true error can be greater due to uncertainties in the assumed droplet size distribution and radiative transfer. Over the entire domain, LWC and re are retrieved with average error 0.05–0.08 g m-3 and ~2 μm, respectively, depending on the number of radiance channels used. The method is then evaluated using real data from the Atmospheric Radiation Measurement program Mobile Facility at the Azores. Two case studies are considered, one stratocumulus and one cumulus. Where available, the liquid water path retrieved directly above the observation site was found to be in good agreement with independent values obtained from microwave radiometer measurements, with an error of 20 g m-2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Groundnuts cultivated in the semiarid tropics are often exposed to water stress (mid-season and end season) and high temperature (> 34 °C) during the critical stages of flowering and pod development. This study evaluated the effects of both water stress and high temperature under field conditions at ICRISAT, India. Treatments included two irrigations (full irrigation, 100 % of crop evapotranspiration; and water stress, 40 % of crop evapotranspiration), four temperature treatments from a combination of two sowing dates and heat tunnels with mean temperatures from sowing to maturity of 26.3° (T1), 27.3° (T2), 29.0° (T3) and 29.7 °C (T4) and two genotypes TMV2 and ICGS 11. The heat tunnels were capable of raising the day temperature by > 10 °C compared to ambient. During the 20-day high-temperature treatment at flowering, mean temperatures were 33.8° (T1), 41.6° (T2), 38.7° (T3) and 43.5°C (T4). The effects of water stress and high temperature were additive and temporary for both vegetative and pod yield, and disappeared as soon as high-temperature stress was removed. Water use efficiency was significantly affected by the main effects of temperature and cultivar and not by water stress treatments. Genotypic differences for tolerance to high temperature can be attributed to differences in flowering pattern, flower number, peg-set and harvest index. It can be inferred from this study that genotypes that are tolerant to water stress are also tolerant to high temperature under field conditions. In addition, genotypes with an ability to establish greater biomass and with a significantly greater partitioning of biomass to pod yield would be suitable for sustaining higher yields in semiarid tropics with high temperature and water stress.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology for site-specific applications of nitrogen (N) fertilizer has exposed a gap in our knowledge about the spatial variation of soil mineral N, and that which will become available during the growing season within arable fields. Spring mineral N and potentially available N were measured in an arable field together with gravimetric water content, loss on ignition, crop yield, percentages of sand, silt, and clay, and elevation to describe their spatial variation geostatistically. The areas with a larger clay content had larger values of mineral N, potentially available N, loss on ignition and gravimetric water content, and the converse was true for the areas with more sandy soil. The results suggest that the spatial relations between mineral N and loss on ignition, gravimetric water content, soil texture, elevation and crop yield, and between potentially available N and loss on ignition and silt content could be used to indicate their spatial patterns. Variable-rate nitrogen fertilizer application would be feasible in this field because of the spatial structure and the magnitude of variation of mineral N and potentially available N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone meal amendments are being considered as a remediation method for metal-contaminated wastes. In various forms (biogenic, geogenic or synthetic), apatite, the principal mineral constituent of bone, has shown promise as an amendment to remediate metal-contaminated soils via the formation of insoluble phosphates of Pb and possibly other metals. The efficacy of commercially available bovine bone meal in this role was investigated in a field trial at Nenthead, Cumbria with a mine waste derived soil contaminated with Zn, Pb and Cd. Two 5 m(2) plots were set up: the first as a control and the second, a treatment plot where the soil was thoroughly mixed with bone meal to a depth of 50 cm at a soil to amendment ratio of 25:1 by weight. An array of soil solution samplers (Rhizon SMS (TM)) were installed in both plots and the soil pore water was collected and analysed for Ca, Cd, Zn and Pb regularly over a period of 2 a. Concurrently with the field trial, a laboratory trial with 800 mm high and 100 mm wide leaching Columns Was conducted using identical samplers and with soil from the held site. A substantial release of Zn, Pb, Cd and Ca was observed associated with the bone meal treatment. This release was transient in the case of the leaching columns, and showed seasonal variation in the case of the field trial. It is proposed that this effect resulted from metal complexation with organic acids released during breakdown of the bone meal organic fraction and was facilitated by the relatively high soil pH of 7.6-8.0. Even after this transient release effect had subsided or when incinerated bone meal was substituted in order to eliminate the organic fraction, no detectable decrease in dissolved metals was observed and no P was detected in solution, in contrast with an earlier small column laboratory study. It is concluded that due to the relative insolubility of apatite at above-neutral pH, the rate of supply of phosphate to soil solution was insufficient to result in significant precipitation of metal phosphates and that this may limit the effectiveness of the method to more acidic soils. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several quartic force fields and a full sextic anharmonic force field for H,O have been determined from high-quality ab initio calculations, the highest at the aug-cc-pVQZ CCSD(T) level of theory. These force fields have been used to determine vibrational excited state band origins up to 15 000 cm - ’ above the zero-point level, using both a perturbation-resonancea pproach and a variational approach. An optimisedq uartic force field hasb eeno btained by least squares refinement of our best ab initio results to fit the observed overtone levels of 5 symmetrically substituted isotopomers of water (Hi60, Hi70, HisO, D,O, and T,O) with an rms error of less than 10 cm-‘, using the perturbation-resonancem odel for the vibrational calculation. Predicatel east squaresr efinement was usedt o provide a loose constraint of the refined force field to the ab initio results. The results obtained prove the viability of the perturbation-resonancem odel for usei n larger molecular systemsa nd also highlight someo f its weaknesse