9 resultados para FETAL DEVELOPMENT
em CentAUR: Central Archive University of Reading - UK
Resumo:
BACKGROUND: Sex differences are present in many neuropsychiatric conditions that affect emotion and approach-avoidance behavior. One potential mechanism underlying such observations is testosterone in early development. Although much is known about the effects of testosterone in adolescence and adulthood, little is known in humans about how testosterone in fetal development influences later neural sensitivity to valenced facial cues and approach-avoidance behavioral tendencies. METHODS: With functional magnetic resonance imaging we scanned 25 8-11-year-old children while viewing happy, fear, neutral, or scrambled faces. Fetal testosterone (FT) was measured via amniotic fluid sampled between 13 and 20 weeks gestation. Behavioral approach-avoidance tendencies were measured via parental report on the Sensitivity to Punishment and Sensitivity to Rewards questionnaire. RESULTS: Increasing FT predicted enhanced selectivity for positive compared with negatively valenced facial cues in reward-related regions such as caudate, putamen, and nucleus accumbens but not the amygdala. Statistical mediation analyses showed that increasing FT predicts increased behavioral approach tendencies by biasing caudate, putamen, and nucleus accumbens but not amygdala to be more responsive to positive compared with negatively valenced cues. In contrast, FT was not predictive of behavioral avoidance tendencies, either through direct or neurally mediated paths. CONCLUSIONS: This work suggests that testosterone in humans acts as a fetal programming mechanism on the reward system and influences behavioral approach tendencies later in life. As a mechanism influencing atypical development, FT might be important across a range of neuropsychiatric conditions that asymmetrically affect the sexes, the reward system, emotion processing, and approach behavior.
Resumo:
The mammalian placenta exhibits striking interspecific morphological variation, yet the implications of such diversity for reproductive strategies and fetal development remain obscure. More invasive hemochorial placentas, in which fetal tissues directly contact the maternal blood supply, are believed to facilitate nutrient transfer, resulting in higher fetal growth rates, and to be a state of relative fetal advantage in the evolution of maternal-offspring conflict. The extent of interdigitation between maternal and fetal tissues has received less attention than invasiveness but is also potentially important because it influences the surface area for exchange. We show that although increased placental invasiveness and interdigitation are both associated with shorter gestations, interdigitation is the key variable. Gestation times associated with highly interdigitated labyrinthine placentas are 44% of those associated with less interdigitated villous and trabecular placentas. There is, however, no relationship between placental traits and neonatal body and brain size. Hence, species with more interdigitated placentas produce neonates of similar body and brain size but in less than half the time. We suggest that the effects of placental interdigitation on growth rates and the way that these are traded off against gestation length may be promising avenues for understanding the evolutionary dynamics of parentoffspring conflict. Keywords: placenta, parent-offspring conflict, life history, brain evolution, reproductive strategies, gestation.
Resumo:
Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.
Resumo:
In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
Resumo:
Autism affects males more than females, giving rise to the idea that the influence of steroid hormones on early fetal brain development may be one important early biological risk factor. Utilizing the Danish Historic Birth Cohort and Danish Psychiatric Central Register, we identified all amniotic fluid samples of males born between 1993 and 1999 who later received ICD-10 (International Classification of Diseases, 10th Revision) diagnoses of autism, Asperger syndrome or PDD-NOS (pervasive developmental disorder not otherwise specified) (n=128) compared with matched typically developing controls. Concentration levels of Δ4 sex steroids (progesterone, 17α-hydroxy-progesterone, androstenedione and testosterone) and cortisol were measured with liquid chromatography tandem mass spectrometry. All hormones were positively associated with each other and principal component analysis confirmed that one generalized latent steroidogenic factor was driving much of the variation in the data. The autism group showed elevations across all hormones on this latent generalized steroidogenic factor (Cohen's d=0.37, P=0.0009) and this elevation was uniform across ICD-10 diagnostic label. These results provide the first direct evidence of elevated fetal steroidogenic activity in autism. Such elevations may be important as epigenetic fetal programming mechanisms and may interact with other important pathophysiological factors in autism.
Resumo:
Associations between low birth weight and prenatal anxiety and later psychopathology may arise from programming effects likely to be adaptive under some, but not other, environmental exposures and modified by sex differences. If physiological reactivity, which also confers vulnerability or resilience in an environment-dependent manner, is associated with birth weight and prenatal anxiety, it will be a candidate to mediate the links with psychopathology. From a general population sample of 1,233 first-time mothers recruited at 20 weeks gestation, a sample of 316 stratified by adversity was assessed at 32 weeks and when their infants were aged 29 weeks (N = 271). Prenatal anxiety was assessed by self-report, birth weight from medical records, and vagal reactivity from respiratory sinus arrhythmia during four nonstressful and one stressful (still-face) procedure. Lower birth weight for gestational age predicted higher vagal reactivity only in girls (interaction term, p = .016), and prenatal maternal anxiety predicted lower vagal reactivity only in boys (interaction term, p = .014). These findings are consistent with sex differences in fetal programming, whereby prenatal risks are associated with increased stress reactivity in females but decreased reactivity in males, with distinctive advantages and penalties for each sex.
Resumo:
Obesity is an escalating threat of pandemic proportions and has risen to such unrivaled prominence in such a short period of time that it has come to define a whole generation in many countries around the globe. The burden of obesity, however, is not equally shared among the population, with certain ethnicities being more prone to obesity than others, while some appear to be resistant to obesity altogether. The reasons behind this ethnic basis for obesity resistance and susceptibility, however, have remained largely elusive. In recent years, much evidence has shown that the level of brown adipose tissue thermogenesis, which augments energy expenditure and is negatively associated with obesity in both rodents and humans, varies greatly between ethnicities. Interestingly, the incidence of low birth weight, which is associated with an increased propensity for obesity and cardiovascular disease in later life, has also been shown to vary by ethnic background. This review serves to reconcile ethnic variations in BAT development and function with ethnic differences in birth weight outcomes to argue that the variation in obesity susceptibility between ethnic groups may have its origins in the in utero programming of BAT development and function as a result of evolutionary adaptation to cold environments.
Resumo:
Dystrophin, the protein product defective in Duchenne muscular dystrophy (DMD), is present in all types of muscle and in the brain. The function of the protein is unknown and its role in the brain is unclear, although 30% of DMD patients show nonprogressive mental retardation. We have therefore studied the localisation of dystrophin in cultures of normal and DMD human fetal neurons using antibodies raised to different regions of the protein. Dystrophin immunoreactivity was demonstrated in the soma and axon hillock of normal neurons and appeared to be associated with the inner part of the cell membrane, although some intracellular staining was also observed. Positive dystrophin staining was present only in cells with fully developed neuronal features, although not all the neurons were positive. Glial cells were always negative for the antigen. Immunostaining with antibodies to the brain spectrins indicate that the dystrophin antibodies did not crossreact with these proteins. The possibility of cross-reactivity with other proteins is discussed. Studies of cells cultured from a DMD fetus also showed specific dystrophin immunostaining in neurons, although the muscle was generally negative for dystrophin. However, the localisation of dystrophin immunostaining and that of the brain spectrins and neurofilaments appeared abnormal, as did the overall morphology of the cells. This suggests that dystrophin may play a role during brain development and dystrophin deficiency results in abnormal neuronal features. This would be consistent with the nonprogressive nature of the mental retardation observed in DMD patients.
Resumo:
The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.