5 resultados para FEEDBACK MODE

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Nino-Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Nino, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Nino state. The presence of these two triggers-the first independent of ENSO and the second phase locking the IOZM to El Nino-allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Nino.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric mid-latitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower latitude jets exhibit a larger shift. The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spin-up ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet, but have similar sub-tropical zonal winds. It is found that lower latitude jets exhibit a larger response due to stronger tropospheric eddy-mean flow feedbacks. A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behaviour across the spectrum of eddy phase speeds. In the configurations used, the higher latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given sub-tropical zonal wind strength, the latitude of the eddy driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many global climate models (GCMs) have trouble simulating Southern Annular Mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve our understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy-mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary scale waves, in particular zonal wavenumber 3, is found in a localized region in the south west Pacific. It cancels a large proportion of the positive feedback by synoptic and smaller scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the CMIP-5 models confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed mutual tapping experiments between two humans to investigate the conditions required for synchronized motion. A transition from an alternative mode to a synchronization mode was discovered under the same conditions when a subject changed from a reactive mode to an anticipation mode in single tapping experiments. Experimental results suggest that the cycle time for each tapping motion is tuned by a proportional control that is based on synchronization errors and cycle time errors. As the tapping frequency increases, the mathematical model based on the feedback control in the sensory-motor closed loop predicts a discrete mode transition as the gain factors of the proportional control decease. The conditions of the synchronization were shown as a consequence of the coupled dynamics based on the subsequent feedback loop in the sensory-motor system.