3 resultados para Eye detection
em CentAUR: Central Archive University of Reading - UK
Resumo:
The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.
Resumo:
Compared to skilled adult readers, children typically make more fixations that are longer in duration, shorter saccades, and more regressions, thus reading more slowly (Blythe & Joseph, 2011). Recent attempts to understand the reasons for these differences have discovered some similarities (e.g., children and adults target their saccades similarly; Joseph, Liversedge, Blythe, White, & Rayner, 2009) and some differences (e.g., children’s fixation durations are more affected by lexical variables; Blythe, Liversedge, Joseph, White, & Rayner, 2009) that have yet to be explained. In this article, the E-Z Reader model of eye-movement control in reading (Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998) is used to simulate various eye-movement phenomena in adults versus children in order to evaluate hypotheses about the concurrent development of reading skill and eye-movement behavior. These simulations suggest that the primary difference between children and adults is their rate of lexical processing, and that different rates of (post-lexical) language processing may also contribute to some phenomena (e.g., children’s slower detection of semantic anomalies; Joseph et al., 2008). The theoretical implications of this hypothesis are discussed, including possible alternative accounts of these developmental changes, how reading skill and eye movements change across the entire lifespan (e.g., college-aged vs. elderly readers), and individual differences in reading ability.
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.