138 resultados para Extreme values
em CentAUR: Central Archive University of Reading - UK
Resumo:
The occurrence of extreme cyclones is analysed in terms of their relationship to the NAO phase and the dominating environmental variables controlling their intensification. These are latent energy (equivalent potential temperature 850 hPa is used as an indicator), upper-air baroclinicity, horizontal divergence and jet stream strength. Cyclones over the North Atlantic are identified and tracked using a numerical algorithm, permitting a detailed analysis of their life cycles. Extreme cyclones are selected as the 10% most severe in terms of intensity. Investigations focus on the main strengthening phase of each cyclone. The environmental factors are related to the NAO, which affects the location and orientation of the cyclone tracks, thus explaining why extreme cyclones occur more (less) frequently during strong positive (negative) NAO phases. The enhanced number of extreme cyclones in positive NAO phases can be explained by the larger area with suitable growth conditions, which is better aligned with the cyclone tracks and is associated with increased cyclone life time and intensity. Moreover, strong intensification of cyclones is frequently linked to the occurrence of extreme values of growth factors in the immediate vicinity of the cyclone centre. Similar results are found for ECHAM5/OM1 for present day conditions, demonstrating that relationships between the environment factors and cyclones are also valid in the GCM. For future climate conditions (following the SRES A1B scenario), the results are similar, but a small increase of the frequency of extreme values is detected near the cyclone cores. On the other hand, total cyclone numbers decrease by 10% over the North Atlantic. An exception is the region near the British Isles, which features increased track density and intensity of extreme cyclones irrespective of the NAO phase. These changes are associated with an intensified jet stream close to Europe. Moreover, an enhanced frequency of explosive developments over the British Isles is found, leading to more frequent windstorms affecting Europe.
Resumo:
This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.
Resumo:
In the Essence project a 17-member ensemble simulation of climate change in response to the SRES A1b scenario has been carried out using the ECHAM5/MPI-OM climate model. The relatively large size of the ensemble makes it possible to accurately investigate changes in extreme values of climate variables. Here we focus on the annual-maximum 2m-temperature and fit a Generalized Extreme Value (GEV) distribution to the simulated values and investigate the development of the parameters of this distribution. Over most land areas both the location and the scale parameter increase. Consequently the 100-year return values increase faster than the average temperatures. A comparison of simulated 100-year return values for the present climate with observations (station data and reanalysis) shows that the ECHAM5/MPI-OM model, as well as other models, overestimates extreme temperature values. After correcting for this bias, it still shows values in excess of 50°C in Australia, India, the Middle East, North Africa, the Sahel and equatorial and subtropical South America at the end of the century.
Resumo:
A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the ‘Wave Activity Index’ (WAI) and the ‘Baroclinic Activity Index’ (BAI) are computed from simulations of the General Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses indicate that the extremes ofWAI and BAI areWeibull distributed, this corresponds to distributions with an upper bound. However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric configurations characteristic of the maxima and minima of WAI and BAI are also examined.
Resumo:
The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.
Resumo:
We compare hypothetical and observed (experimental) willingness to pay (WTP) for a gradual improvement in the environmental performance of a marketed good (an office table). First, following usual practices in marketing research, subjects’ stated WTP for the improvement is obtained. Second, the same subjects participate in a real reward experiment designed to replicate the scenario valued in the hypothetical question. Our results show that, independently of the degree of the improvement, there are no significant median differences between stated and experimental data. However, subjects reporting extreme values of WTP (low or high) exhibit a more moderate behavior in the experiment.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Resumo:
A one-dimensional surface energy-balance lake model, coupled to a thermodynamic model of lake ice, is used to simulate variations in the temperature of and evaporation from three Estonian lakes: Karujärv, Viljandi and Kirjaku. The model is driven by daily climate data, derived by cubic-spline interpolation from monthly mean data, and was run for periods of 8 years (Kirjaku) up to 30 years (Viljandi). Simulated surface water temperature is in good agreement with observations: mean differences between simulated and observed temperatures are from −0.8°C to +0.1°C. The simulated duration of snow and ice cover is comparable with observed. However, the model generally underpredicts ice thickness and overpredicts snow depth. Sensitivity analyses suggest that the model results are robust across a wide range (0.1–2.0 m−1) of lake extinction coefficient: surface temperature differs by less than 0.5°C between extreme values of the extinction coefficient. The model results are more sensitive to snow and ice albedos. However, changing the snow (0.2–0.9) and ice (0.15–0.55) albedos within realistic ranges does not improve the simulations of snow depth and ice thickness. The underestimation of ice thickness is correlated with the overestimation of snow cover, since a thick snow layer insulates the ice and limits ice formation. The overestimation of snow cover results from the assumption that all the simulated winter precipitation occurs as snow, a direct consequence of using daily climate data derived by interpolation from mean monthly data.
Resumo:
The importance of temperature in the determination of the yield of an annual crop (groundnut; Arachis hypogaea L. in India) was assessed. Simulations from a regional climate model (PRECIS) were used with a crop model (GLAM) to examine crop growth under simulated current (1961-1990) and future (2071-2100) climates. Two processes were examined: the response of crop duration to mean temperature and the response of seed-set to extremes of temperature. The relative importance of, and interaction between, these two processes was examined for a number of genotypic characteristics, which were represented by using different values of crop model parameters derived from experiments. The impact of mean and extreme temperatures varied geographically, and depended upon the simulated genotypic properties. High temperature stress was not a major determinant of simulated yields in the current climate, but affected the mean and variability of yield under climate change in two regions which had contrasting statistics of daily maximum temperature. Changes in mean temperature had a similar impact on mean yield to that of high temperature stress in some locations and its effects were more widespread. Where the optimal temperature for development was exceeded, the resulting increase in duration in some simulations fully mitigated the negative impacts of extreme temperatures when sufficient water was available for the extended growing period. For some simulations the reduction in mean yield between the current and future climates was as large as 70%, indicating the importance of genotypic adaptation to changes in both means and extremes of temperature under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
Resumo:
Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright
Resumo:
Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.