5 resultados para Extremal Problems
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s