2 resultados para Exposição gradual ao medo

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a database of 110 gradual solar energetic particle (SEP) events, over the period 1967–2006, providing estimates of event onset, duration, fluence, and peak flux for protons of energy E > 60 MeV. The database is established mainly from the energetic proton flux data distributed in the OMNI 2 data set; however, we also utilize the McMurdo neutron monitor and the energetic proton flux from GOES missions. To aid the development of the gradual SEP database, we establish a method with which the homogeneity of the energetic proton flux record is improved. A comparison between other SEP databases and the database developed here is presented which discusses the different algorithms used to define an event. Furthermore, we investigate the variation of gradual SEP occurrence and fluence with solar cycle phase, sunspot number (SSN), and interplanetary magnetic field intensity (Bmag) over solar cycles 20–23. We find that the occurrence and fluence of SEP events vary with the solar cycle phase. Correspondingly, we find a positive correlation between SEP occurrence and solar activity as determined by SSN and Bmag, while the mean fluence in individual events decreases with the same measures of solar activity. Therefore, although the number of events decreases when solar activity is low, the events that do occur at such times have higher fluence. Thus, large events such as the “Carrington flare” may be more likely at lower levels of solar activity. These results are discussed in the context of other similar investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental evidence suggests a finer genetic, structural and functional subdivision of the layers which form a cortical column. The classical layer II/III (LII/III) of rodent neocortex integrates ascending sensory information with contextual cortical information for behavioral read-out. We systematically investigated to which extent regular-spiking supragranular pyramidal neurons, located at different depths within the cortex, show different input-output connectivity patterns. Combining glutamate-uncaging with whole-cell recordings and biocytin filling, we revealed a novel cellular organization of LII/III: (i) “Lower LII/III” pyramidal cells receive a very strong excitatory input from lemniscal LIV and much fewer inputs from paralemniscal LVa. They project to all layers of the home column, including a feedback projection to LIV whereas transcolumnar projections are relatively sparse. (ii) “Upper LII/III” pyramidal cells also receive their strongest input from LIV, but in addition, a very strong and dense excitatory input from LVa. They project extensively to LII/III as well as LVa and Vb of their home and neighboring columns, (iii) “Middle LII/III” pyramidal cell show an intermediate connectivity phenotype that stands in many ways in-between the features described for lower versus upper LII/III. “Lower LII/III” intracolumnarly segregates and transcolumnarly integrates lemniscal information whereas “upper LII/III” seems to integrate lemniscal with paralemniscal information. This suggests a finegrained functional subdivision of the supragranular compartment containing multiple circuits without any obvious cytoarchitectonic, other structural or functional correlate of a laminar border in rodent barrel cortex.