24 resultados para Exponential financial models

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The level of insolvencies in the construction industry is high, when compared to other industry sectors. Given the management expertise and experience that is available to the construction industry, it seems strange that, according to the literature, the major causes of failure are lack of financial control and poor management. This indicates that with a good cash flow management, companies could be kept operating and financially healthy. It is possible to prevent failure. Although there are financial models that can be used to predict failure, they are based on company accounts, which have been shown to be an unreliable source of data. There are models available for cash flow management and forecasting and these could be used as a starting point for managers in rethinking their cash flow management practices. The research reported here has reached the stage of formulating researchable questions for an in-depth study including issues such as how contractors manage their cash flow, how payment practices can be managed without damaging others in the supply chain and the relationships between companies" financial structures and the payment regimes to which they are subjected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The level of insolvencies in the construction industry is high, when compared to other industry sectors. Given the management expertise and experience that is available to the construction industry, it seems strange that, according to the literature, the major causes of failure are lack of financial control and poor management. This indicates that with a good cash flow management, companies could be kept operating and financially healthy. It is possible to prevent failure. Although there are financial models that can be used to predict failure, they are based on company accounts, which have been shown to be an unreliable source of data. There are models available for cash flow management and forecasting and these could be used as a starting point for managers in rethinking their cash flow management practices. The research reported here has reached the stage of formulating researchable questions for an in-depth study including issues such as how contractors manage their cash flow, how payment practices can be managed without damaging others in the supply chain and the relationships between companies’ financial structures and the payment regimes to which they are subjected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines the changes in the length of commercial property leases over the last decade and presents an analysis of the consequent investment and occupational pricing implications for commercial property investmentsIt is argued that the pricing implications of a short lease to an investor are contingent upon the expected costs of the letting termination to the investor, the probability that the letting will be terminated and the volatility of rental values.The paper examines the key factors influencing these variables and presents a framework for incorporating their effects into pricing models.Approaches to their valuation derived from option pricing are critically assessed. It is argued that such models also tend to neglect the price effects of specific risk factors such as tenant circumstances and the terms of break clause. Specific risk factors have a significant bearing on the probability of letting termination and on the level of the resultant financial losses. The merits of a simulation methododology are examined for rental and capital valuations of short leases and properties with break clauses.It is concluded that in addition to the rigour of its internal logic, the success of any methodology is predicated upon the accuracy of the inputs.The lack of reliable data on patterns in, and incidence of, lease termination and the lack of reliable time series of historic property performance limit the efficacy of financial models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annuities are perceived as being illiquid financial instruments, and this has limited their attractiveness to consumers and their inclusion in financial models. However, short positions in annuities can be replicated using life insurance and debt, permitting long positions in annuities to be offset, or short annuity positions to be created. The implications of this result for the annuity puzzle, arbitrage between the annuity and life insurance markets, and speculation on expected longevity are investigated. It is argued that annuity replication could help reduce the annuity puzzle, improve the price efficiency of annuity markets and promote the inclusion of annuities in household portfolios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximate to 141 thousand years ago (Kya), an exit out-of-Africa approximate to 51 Kya, and a recent colonization of the Americas approximate to 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.

Relevância:

30.00% 30.00%

Publicador: