23 resultados para Exponential Sum
em CentAUR: Central Archive University of Reading - UK
Resumo:
The relationship between a loss of viability and several morphological and physiological changes was examined with Escherichia coli strain J1 subjected to high-pressure treatment. The pressure resistance of stationary-phase cells was much higher than that of exponential-phase cells, but in both types of cell, aggregation of cytoplasmic proteins and condensation of the nucleoid occurred after treatment at 200 MPa for 8 min. Although gross changes were detected in these cellular structures, they were not related to cell death, at least for stationary-phase cells. In addition to these events, exponential-phase cells showed changes in their cell envelopes that were not seen for stationary-phase cells, namely physical perturbations of the cell envelope structure, a loss of osmotic responsiveness, and a loss of protein and RNA to the extracellular medium. Based on these observations, we propose that exponential-phase cells are inactivated under high pressure by irreversible damage to the cell membrane. In contrast, stationary-phase cells have a cytoplasmic membrane that is robust enough to withstand pressurization up to very intense treatments. The retention of an intact membrane appears to allow the stationary-phase cell to repair gross changes in other cellular structures and to remain viable at pressures that are lethal to exponential-phase cells.
Resumo:
In this paper, we study the periodic oscillatory behavior of a class of bidirectional associative memory (BAM) networks with finite distributed delays. A set of criteria are proposed for determining global exponential periodicity of the proposed BAM networks, which assume neither differentiability nor monotonicity of the activation function of each neuron. In addition, our criteria are easily checkable. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Following the US model, the UK has seen considerable innovation in the funding, finance and procurement of real estate in the last decade. In the growing CMBS market asset backed securitisations have included $2.25billion secured on the Broadgate office development and issues secured on Canary Wharf and the Trafford Centre regional mall. Major occupiers (retailer Sainsbury’s, retail bank Abbey National) have engaged in innovative sale & leaseback and outsourcing schemes. Strong claims are made concerning the benefits of such schemes – e.g. British Land were reported to have reduced their weighted cost of debt by 150bp as a result of the Broadgate issue. The paper reports preliminary findings from a project funded by the Corporation of London and the RICS Research Foundation examining a number of innovative schemes to identify, within a formal finance framework, sources of added value and hidden costs. The analysis indicates that many of the gains claimed conceal costs – in terms of market value of debt or flexibility of management – while others result from unusual firm or market conditions (for example utilising the UK long lease and the unusual shape of the yield curve). Nonetheless, there are real gains resulting from the innovations, reflecting arbitrage and institutional constraints in the direct (private) real estate market
Resumo:
Gossip (or Epidemic) protocols have emerged as a communication and computation paradigm for large-scale networked systems. These protocols are based on randomised communication, which provides probabilistic guarantees on convergence speed and accuracy. They also provide robustness, scalability, computational and communication efficiency and high stability under disruption. This work presents a novel Gossip protocol named Symmetric Push-Sum Protocol for the computation of global aggregates (e.g., average) in decentralised and asynchronous systems. The proposed approach combines the simplicity of the push-based approach and the efficiency of the push-pull schemes. The push-pull schemes cannot be directly employed in asynchronous systems as they require synchronous paired communication operations to guarantee their accuracy. Although push schemes guarantee accuracy even with asynchronous communication, they suffer from a slower and unstable convergence. Symmetric Push- Sum Protocol does not require synchronous communication and achieves a convergence speed similar to the push-pull schemes, while keeping the accuracy stability of the push scheme. In the experimental analysis, we focus on computing the global average as an important class of node aggregation problems. The results have confirmed that the proposed method inherits the advantages of both other schemes and outperforms well-known state of the art protocols for decentralized Gossip-based aggregation.