134 resultados para Expert Systems Building Tools
em CentAUR: Central Archive University of Reading - UK
Resumo:
In recent years there has been a growing debate over whether or not standards should be produced for user system interfaces. Those in favor of standardization argue that standards in this area will result in more usable systems, while those against argue that standardization is neither practical nor desirable. The present paper reviews both sides of this debate in relation to expert systems. It argues that in many areas guidelines are more appropriate than standards for user interface design.
Resumo:
The application of prediction theories has been widely practised for many years in many industries such as manufacturing, defence and aerospace. Although these theories are not new, their application has not been widely used within the building services industry. Collectively, the building services industry should take a deeper look at these approaches in comparison with the traditional deterministic approaches currently being practised. By extending the application into this industry, this paper seeks to provide the industry with an overview of how simplified stochastic modelling coupled with availability and reliability predictions using historical data compiled from various sources could enhance the quality of building services systems.
Resumo:
The ultimate criterion of success for interactive expert systems is that they will be used, and used to effect, by individuals other than the system developers. A key ingredient of success in most systems is involving users in the specification and development of systems as they are being built. However, until recently, system designers have paid little attention to ascertaining user needs and to developing systems with corresponding functionality and appropriate interfaces to match those requirements. Although the situation is beginning to change, many developers do not know how to go about involving users, or else tackle the problem in an inadequate way. This paper discusses the need for user involvement and considers why many developers are still not involving users in an optimal way. It looks at the different ways in which users can be involved in the development process and describes how to select appropriate techniques and methods for studying users. Finally, it discusses some of the problems inherent in involving users in expert system development, and recommends an approach which incorporates both ethnographic analysis and formal user testing.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.