9 resultados para Excision
em CentAUR: Central Archive University of Reading - UK
Resumo:
Anabaena PCC 7120 nifHDK operon is interrupted by an 11 kb DNA element which is excised during the development of heterocysts by Excisase A, encoded by the xisA gene residing on the element. The excision is a site-specific recombination event that occurs at the I I base pair direct repeats flanking the element. Earlier work showed the excision of the I I kb element in Escherichia coli at a frequency 0.3%. We report here the excision of this element at 1.1% and 1.98% in E. coli DH5 alpha, and 1.9% and 10.9% in E. coli JM 101 when grown on Luria broth and minimal media, respectively. Excision of nifD element in isogenic recA(-) (RK1) and recA(+) (RK2) E. coli JM101 P1 transductants, showed similar results to that of E. coli JM101 and DH5 alpha, respectively. A plasmid pMX32, carrying a xisA defective 11 kb element, showed no excision in E. coli RK2 strain. In contrast to Anabaena PCC 7120, excision of nifD element did not increase in E. call DH5 alpha grown in iron-deficient conditions. A PxisA::lacZ transcriptional fusion, used to detect the expression of elusive xisA gene, showed maximal beta-galactosidase activity in the stationary phase. The results suggest that the excision event in E. coli may involve additional factors, such as RecA and that the physiological status can influence the excision of nifD element. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In mammalian cells, DNA ligase IIIalpha and DNA ligase I participate in the short- and long-patch base excision repair pathways, respectively. Using an in vitro repair assay employing DNA ligase-depleted cell extracts and DNA substrates containing a single lesion repaired either through short-patch (regular abasic site) or long-patch (reduced abasic site) base excision repair pathways, we addressed the question whether DNA ligases are specific to each pathway or if they are exchangeable. We find that immunodepletion of DNA ligase I did not affect the short-patch repair pathway but blocked long-patch repair, suggesting that DNA ligase IIIa is not able to substitute DNA ligase I during long-patch repair. In contrast, immunodepletion of DNA ligase IIIa did not significantly affect either pathway. Moreover, repair of normal abasic sites in wild-type and X-ray cross-complementing gene 1 (XRCC1)-DNA ligase IIIalpha-immunodepleted cell extracts involved similar proportions of short- and long-patch repair events. This suggests that DNA ligase I was able to efficiently substitute the XRCC1-DNA ligase IIIa complex during short-patch repair.
Resumo:
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.
Resumo:
The relationship between shoot growth and rooting was examined in two, 'difficult-to root' amenity trees, Syringa vulgaris L. cv. Charles Joly and Corylus avellana L. cv. Aurea. A range of treatments reflecting severity of pruning was imposed on field-grown stock prior to bud break. To minimise variation due to the numbers of buds that developed under different treatments, bud number was restricted to 30 per plant. Leafy cuttings were harvested at different stages of the active growth phase of each species. With Syringa, rooting decreased with later harvests, but loss of rooting potential was delayed in cuttings collected from the most severe pruning treatment. Rooting potential was associated with the extent of post-excision shoot growth on the cutting but regression analyses indicated that this relationship could not entirely explain the loss of rooting with time, nor the effects due to pruning. Similarly, in Corylus rooting was promoted by severe pruning, but the relationship between apical growth on the cutting and rooting was weaker than in Syringa, and only at the last harvest did growth play a critical role in determining rooting. Another unusual factor of the last harvest of Corylus was a bimodal distribution of roots per cutting, with very few rooted cuttings having less than five roots. This implies that, for this harvest at least, the potential of an individual cutting to root is probably not limited by the number of potential rooting sites.
Resumo:
In plant tissues the extracellular environment or apoplast, incorporating the cell wall, is a highly dynamic compartment with a role in many important plant processes including defence, development, signalling and assimilate partitioning. Soluble apoplast proteins from Arabidopsis thaliana, Triticum aestivum and Oryza sativa were separated by two-dimensional electrophoresis. The molecular weights and isoelectric points for the dominant proteins were established prior to excision, sequencing and identification by matrix-assisted laser-desorption ionisation time of flight mass spectrometry (MALDI - TOF MS). From the selected spots, 23 proteins from O. sativa and 25 proteins from A. thaliana were sequenced, of which nine identifications were made in O. sativa (39%) and 14 in A. thaliana (56%). This analysis revealed that: (i) patterns of proteins revealed by two-dimensional electrophoresis were different for each species indicating that speciation could occur at the level of the apoplast, (ii) of the proteins characterised many belonged to diverse families reflecting the multiple functions of the apoplast and (iii), a large number of the apoplast proteins could not be identified indicating that the majority of extracellular proteins are yet to be assigned. The principal proteins identified in the aqueous matrix of the apoplast were involved in defence, i.e. germin-like proteins or glucanases, and cell expansion, i.e. β-D-glucan glucohydrolases. This study has demonstrated that proteomic analysis can be used to resolve the apoplastic protein complement and to identify adaptive changes induced by environmental effectors.
Resumo:
The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Plant resistance can impose stress on invading pathogens that can lead to, and select for, beneficial changes in the bacterial genome. The Pseudomonas syringae pv. phaseolicola (Pph) genomic island PPHGI-1 carries an effector gene, avrPphB (hopAR1), which triggers the hypersensitive reaction in bean plants carrying the R3 resistance gene. Interaction between avrPphB and R3 generates an antimicrobial environment within the plant, resulting in the excision of PPHGI-1 and its loss from the genome. The loss of PPHGI-1 leads to the generation of a Pph strain able to cause disease in the plant. In this study, we observed that lower bacterial densities inoculated into resistant bean (Phaseolus vulgaris) plants resulted in quicker PPHGI-1 loss from the population, and that loss of the island was strongly influenced by the type of plant resistance encountered by the bacteria. In addition, we found that a number of changes occurred in the bacterial genome during growth in the plant, whether or not PPHGI-1 was lost. We also present evidence that the circular PPHGI-1 episome is able to replicate autonomously when excised from the genome. These results shed more light onto the plasticity of the bacterial genome as it is influenced by in planta conditions.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H . F . methyl .. hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Resumo:
INTRODUCTION Due to their specialist training, breast care nurses (BCNs) should be able to detect emotional distress and offer support to breast cancer patients. However, patients who are most distressed after diagnosis generally experience least support from care staff. To test whether BCNs overcome this potential barrier, we compared the support experienced by depressed and non-depressed patients from their BCNs and the other main professionals involved in their care: surgeons and ward nurses. PATIENTS AND METHODS Women with primary breast cancer (n = 355) 2–4 days after mastectomy or wide local excision, self-reported perceived professional support and current depression. Analysis of variance compared support ratings of depressed and non-depressed patients across staff types. RESULTS There was evidence of depression in 31 (9%) patients. Depressed patients recorded less surgeon and ward nurse support than those who were not depressed but the support received by patients from the BCN was high, whether or not patients were depressed. CONCLUSIONS BCNs were able to provide as much support to depressed patients as to non-depressed patients, whereas depressed patients felt less supported by surgeons and ward nurses than did non-depressed patients. Future research should examine the basis of BCNs' ability to overcome barriers to support in depressed patients. Our findings confirm the importance of maintaining the special role of the BCN.