41 resultados para Evapotranspiration reference
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.
Resumo:
21st century climate change is projected to result in an intensification of the global hydrological cycle, but there is substantial uncertainty in how this will impact freshwater availability. A relatively overlooked aspect of this uncertainty pertains to how different methods of estimating potential evapotranspiration (PET) respond to changing climate. Here we investigate the global response of six different PET methods to a 2 °C rise in global mean temperature. All methods suggest an increase in PET associated with a warming climate. However, differences in PET climate change signal of over 100% are found between methods. Analysis of a precipitation/PET aridity index and regional water surplus indicates that for certain regions and GCMs, choice of PET method can actually determine the direction of projections of future water resources. As such, method dependence of the PET climate change signal is an important source of uncertainty in projections of future freshwater availability.
Resumo:
A collection of 24 seawaters from various worldwide locations and differing depth was culled to measure their chlorine isotopic composition (delta(37)Cl). These samples cover all the oceans and large seas: Atlantic, Pacific, Indian and Antarctic oceans, Mediterranean and Red seas. This collection includes nine seawaters from three depth profiles down to 4560 mbsl. The standard deviation (2sigma) of the delta(37)Cl of this collection is +/-0.08 parts per thousand, which is in fact as large as our precision of measurement ( +/- 0.10 parts per thousand). Thus, within error, oceanic waters seem to be an homogeneous reservoir. According to our results, any seawater could be representative of Standard Mean Ocean Chloride (SMOC) and could be used as a reference standard. An extended international cross-calibration over a large range of delta(37)Cl has been completed. For this purpose, geological fluid samples of various chemical compositions and a manufactured CH3Cl gas sample, with delta(37)Cl from about -6 parts per thousand to +6 parts per thousand have been compared. Data were collected by gas source isotope ratio mass spectrometry (IRMS) at the Paris, Reading and Utrecht laboratories and by thermal ionization mass spectrometry (TIMS) at the Leeds laboratory. Comparison of IRMS values over the range -5.3 parts per thousand to +1.4 parts per thousand plots on the Y=X line, showing a very good agreement between the three laboratories. On 11 samples, the trend line between Paris and Reading Universities is: delta(37)Cl(Reading)= (1.007 +/- 0.009)delta(37)Cl(Paris) - (0.040 +/- 0.025), with a correlation coefficient: R-2 = 0.999. TIMS values from Leeds University have been compared to IRMS values from Paris University over the range -3.0 parts per thousand to +6.0 parts per thousand. On six samples, the agreement between these two laboratories, using different techniques is good: delta(37)Cl(Leeds)=(1.052 +/- 0.038)delta(37)Cl(Paris) + (0.058 +/- 0.099), with a correlation coefficient: R-2 = 0.995. The present study completes a previous cross-calibration between the Leeds and Reading laboratories to compare TIMS and IRMS results (Anal. Chem. 72 (2000) 2261). Both studies allow a comparison of IRMS and TIMS techniques between delta(37)Cl values from -4.4 parts per thousand to +6.0 parts per thousand and show a good agreement: delta(37)Cl(TIMS)=(1.039 +/- 0.023)delta(37)Cl(IRMS)+(0.059 +/- 0.056), with a correlation coefficient: R-2 = 0.996. Our study shows that, for fluid samples, if chlorine isotopic compositions are near 0 parts per thousand, their measurements either by IRMS or TIMS will give comparable results within less than +/- 0.10 parts per thousand, while for delta(37)Cl values as far as 10 parts per thousand (either positive or negative) from SMOC, both techniques will agree within less than +/- 0.30 parts per thousand. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A reference model of fallible endgame play is defined in terms of a spectrum of endgame players whose play ranges in competence from the optimal to the anti-optimal choice of move. They may be used as suitably skilled practice partners, to assess a player, to differentiate between otherwise equi-optimal moves, to promote or expedite a game result, to run Monte-Carlo simulations, and to identify the difficulty of a position or a whole endgame.
Resumo:
A reference model of fallible endgame play is defined in terms of a spectrum of endgame players whose play ranges in competence from random to optimal choice of move. They may be used as suitable practice partners, to differentiate between otherwise equi-optimal moves, to promote or expedite a result, to assess an opponent, to run Monte Carlo simulations, and to identify the difficulty of a position or a whole endgame.
Resumo:
Has international law ever, and, if it has not, can it ever, truly freed itself from the strictures of neocolonialism and the drive by a privileged elite to dominate the world scene? This article begins by inquiring into the nature of neocolonialism and, in so doing, pays particular attention to the writings of former Ghanaian President Kwame Nkrumah. It then proceeds to determine how neocolonialist designs surface in international law today by briefly looking at two aspects of international law in particular, namely customary international law, with specific reference to the counterterrorism context, and the principle of self-defence. In the final analysis, this article argues for a necessary and eternal scepticism of international law and the agendas of its privileged gatekeepers. Like classic State power, it opens itself to, and often operates as, neocolonial overreach, and to quote Nkrumah, “[t]he cajolement, the wheedlings, the seductions and the Trojan horses of neo-colonialism must be stoutly resisted, for neo-colonialism is a latter-day harpy, a monster which entices its victims with sweet music.”
Resumo:
The primary purpose of this study was to model the partitioning of evapotranspiration in a maize-sunflower intercrop at various canopy covers. The Shuttleworth-Wallace (SW) model was extended for intercropping systems to include both crop transpiration and soil evaporation and allowing interaction between the two. To test the accuracy of the extended SW model, two field experiments of maize-sunflower intercrop were conducted in 1998 and 1999. Plant transpiration and soil evaporation were measured using sap flow gauges and lysimeters, respectively. The mean prediction error (simulated minus measured values) for transpiration was zero (which indicated no overall bias in estimation error), and its accuracy was not affected by the plant growth stages, but simulated transpiration during high measured transpiration rates tended to be slightly underestimated. Overall, the predictions for daily soil evaporation were also accurate. Model estimation errors were probably due to the simplified modelling of soil water content, stomatal resistances and soil heat flux as well as due to the uncertainties in characterising the 2 micrometeorological conditions. The SW’s prediction of transpiration was most sensitive to parameters most directly related to the canopy characteristics such as the partitioning of captured solar radiation, canopy resistance, and bulk boundary layer resistance.
Resumo:
Bovine tuberculosis (TB)is an important economic disease. Badgers (Meles meles) are the wildlife source implicated in many cattle outbreaks of TB in Britain, and extensive badger control is a controversial option to reduce the disease. A badger and cattle population model was developed, simulating TB epidemiology; badger ecology, including postcull social perturbation; and TB-related farm management. An economic cost-benefit module was integrated into the model to assess whether badger control offers economic benefits. Model results strongly indicate that although, if perturbation were restricted, extensive badger culling could reduce rates in cattle, overall an economic loss would be more likely than a benefit. Perturbation of the badger population was a key factor determining success or failure of control. The model highlighted some important knowledge gaps regarding both the spatial and temporal characteristics of perturbation that warrant further research.