57 resultados para Ethical foundations
em CentAUR: Central Archive University of Reading - UK
Resumo:
Is the human body a suitable place for a microchip? Such discussion is no longer hypothetical - in fact in reality it has not been so for some years. Restorative devices such as pacemakers and cochlear implants have become well established, yet these sophisticated devices form notably intimate links between technology and the body. More recent developments in engineering technologies have meant that the integration of silicon with biology is now reaching new levels - with devices which interact directly with the brain. As medical technologies continue to advance, their potential benefits for human enhancement will become increasingly attractive, and so we need to seriously consider where this may take us. In this paper, an attempt is made to demonstrate that, in the medical context, the foundations of more advanced implantable enhancement technologies are already notably progressed, and that they are becoming more science fact than is widely considered. A number of wider moral, ethical and legal issues stem from enhancement applications and it is difficult to foresee the social consequences, the fundamental changes on our very conception of self and the impact on our identity of adoption long term. As a result, it is necessary to acknowledge the possibilities and is timely to have debate to address the wider implications these possibilities may bring.
Resumo:
The interface between humans and technology is a rapidly changing field. In particular as technological methods have improved dramatically so interaction has become possible that could only be speculated about even a decade earlier. This interaction can though take on a wide range of forms. Indeed standard buttons and dials with televisual feedback are perhaps a common example. But now virtual reality systems, wearable computers and most of all, implant technology are throwing up a completely new concept, namely a symbiosis of human and machine. No longer is it sensible simply to consider how a human interacts with a machine, but rather how the human-machine symbiotic combination interacts with the outside world. In this paper we take a look at some of the recent approaches, putting implant technology in context. We also consider some specific practical examples which may well alter the way we look at this symbiosis in the future. The main area of interest as far as symbiotic studies are concerned is clearly the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Often pilot tests and experimentation has been carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed briefly here. The paper however concentrates on human experimentation, in particular that carried out by the authors themselves, firstly to indicate what possibilities exist as of now with available technology, but perhaps more importantly to also show what might be possible with such technology in the future and how this may well have extensive social effects. The driving force behind the integration of technology with humans on a neural level has historically been to restore lost functionality in individuals who have suffered neurological trauma such as spinal cord damage, or who suffer from a debilitating disease such as lateral amyotrophic sclerosis. Very few would argue against the development of implants to enable such people to control their environment, or some aspect of their own body functions. Indeed this technology in the short term has applications for amelioration of symptoms for the physically impaired, such as alternative senses being bestowed on a blind or deaf individual. However the issue becomes distinctly more complex when it is proposed that such technology be used on those with no medical need, but instead who wish to enhance and augment their own bodies, particularly in terms of their mental attributes. These issues are discussed here in the light of practical experimental test results and their ethical consequences.
Resumo:
Ubiquitous healthcare is an emerging area of technology that uses a large number of environmental and patient sensors and actuators to monitor and improve patients’ physical and mental condition. Tiny sensors gather data on almost any physiological characteristic that can be used to diagnose health problems. This technology faces some challenging ethical questions, ranging from the small-scale individual issues of trust and efficacy to the societal issues of health and longevity gaps related to economic status. It presents particular problems in combining developing computer/information/media ethics with established medical ethics. This article describes a practice-based ethics approach, considering in particular the areas of privacy, agency, equity and liability. It raises questions that ubiquitous healthcare will force practitioners to face as they develop ubiquitous healthcare systems. Medicine is a controlled profession whose practise is commonly restricted by government-appointed authorities, whereas computer software and hardware development is notoriously lacking in such regimes.
Resumo:
The SPE taxonomy of evolving software systems, first proposed by Lehman in 1980, is re-examined in this work. The primary concepts of software evolution are related to generic theories of evolution, particularly Dawkins' concept of a replicator, to the hermeneutic tradition in philosophy and to Kuhn's concept of paradigm. These concepts provide the foundations that are needed for understanding the phenomenon of software evolution and for refining the definitions of the SPE categories. In particular, this work argues that a software system should be defined as of type P if its controlling stakeholders have made a strategic decision that the system must comply with a single paradigm in its representation of domain knowledge. The proposed refinement of SPE is expected to provide a more productive basis for developing testable hypotheses and models about possible differences in the evolution of E- and P-type systems than is provided by the original scheme. Copyright (C) 2005 John Wiley & Sons, Ltd.