56 resultados para Escape lanes.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Periods between predator detection and an escape response (escape delays) by prey upon attack by a predator often arise because animals trade-off the benefits such a delay gives for assessing risk accurately with the costs of not escaping as quickly as possible. We tested whether freezing behaviour (complete immobility in a previously foraging bird) observed in chaffinches before escaping from an approaching potential threat functions as a period of risk-assessment, and whether information on predator identity is gained even when time available is very short. We flew either a model of a sparrowhawk (predator) or a woodpigeon (no threat) at single chaffinches. Escape delays were significantly shorter with the hawk, except when a model first appeared close to the chaffinch. Chaffinches were significantly more vigilant when they resumed feeding after exposure to the sparrowhawk compared to the woodpigeon showing that they were able to distinguish between threats, and this applied even when time available for assessment was short (an average of 0.29 s). Our results show freezing in chaffinches functions as an effective economic risk assessment period, and that threat information is gained even when very short periods of time are available during an attack.
Resumo:
Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.
Resumo:
Chaotic traffic, prevalent in many countries, is marked by a large number of vehicles driving with different speeds without following any predefined speed lanes. Such traffic rules out using any planning algorithm for these vehicles which is based upon the maintenance of speed lanes and lane changes. The absence of speed lanes may imply more bandwidth and easier overtaking in cases where vehicles vary considerably in both their size and speed. Inspired by the performance of artificial potential fields in the planning of mobile robots, we propose here lateral potentials as measures to enable vehicles to decide about their lateral positions on the road. Each vehicle is subjected to a potential from obstacles and vehicles in front, road boundaries, obstacles and vehicles to the side and higher speed vehicles to the rear. All these potentials are lateral and only govern steering the vehicle. A speed control mechanism is also used for longitudinal control of vehicle. The proposed system is shown to perform well for obstacle avoidance, vehicle following and overtaking behaviors.
Resumo:
Planning of autonomous vehicles in the absence of speed lanes is a less-researched problem. However, it is an important step toward extending the possibility of autonomous vehicles to countries where speed lanes are not followed. The advantages of having nonlane-oriented traffic include larger traffic bandwidth and more overtaking, which are features that are highlighted when vehicles vary in terms of speed and size. In the most general case, the road would be filled with a complex grid of static obstacles and vehicles of varying speeds. The optimal travel plan consists of a set of maneuvers that enables a vehicle to avoid obstacles and to overtake vehicles in an optimal manner and, in turn, enable other vehicles to overtake. The desired characteristics of this planning scenario include near completeness and near optimality in real time with an unstructured environment, with vehicles essentially displaying a high degree of cooperation and enabling every possible(safe) overtaking procedure to be completed as soon as possible. Challenges addressed in this paper include a (fast) method for initial path generation using an elastic strip, (re-)defining the notion of completeness specific to the problem, and inducing the notion of cooperation in the elastic strip. Using this approach, vehicular behaviors of overtaking, cooperation, vehicle following,obstacle avoidance, etc., are demonstrated.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.
Resumo:
Purpose – The purpose of this the paper is to review the motives for internationalization to clarify previous arguments and provide a theory-driven classification. Design/methodology/approach – The authors build on behavioral economics and propose a classification of internationalization motives as the result of the interaction among two dimensions, an economics-driven exploitation of existing resources or exploration of new resources, and a psychology-driven search for better host country conditions or avoidance of poor home country conditions. Findings – These two dimensions result in four internationalization motives: sell more, in which the company exploits existing resources at home and obtains better host country conditions; buy better, in which the company exploits existing resources abroad and avoids poor home country conditions; upgrade, in which the company explores for new resources, and it obtains better host country conditions; and escape, in which the company explores for new resources and avoids poor home country conditions. Originality/value – This theory-driven classification provides predictive power for future analyses of internationalization motives.
Resumo:
Disequilibria between Pb-210 and Ra-226 can be used to trace magma degassing, because the intermediate nuclides, particularly Rn-222, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for (Pb-210/Ra-226). Both excesses and deficits of Pb-210 are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by Pb-210 deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up Pb-210 excess is much shorter (months) as can be observed from steady increases of (Pb-210/Ra-226) with time during 1980-1982. The formation of Pb-210 excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of (Pb-210/Ra-226) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both Pb-210 deficits and Pb-210 excesses, cannot be reconciled in a single event. Rather Pb-210 deficits are associated with pre-eruptive diffuse degassing, while Pb-210 excesses document the more vigorous degassing associated with eruption and recharge of the system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conical sedimentary structures are widespread in the geological column. Those that are mediated by organisms (or organic matter) can be attributed to seven principal processes, which are investigated by experiment and/or field observations: (1) sand collapse into a cavity (decomposed body, open shaft, or gallery), (2) upward (escape) or downward locomotion by an organism through the sediment, (3) upward adjustment (equilibration), (4) casting of coelenterates' excavations, (5) organism-mediated soft-sediment deformation in heterolithic sediment, (6) biodeformational small and large excavations by organisms, and (7) fluid (gas or liquid) escape structures. Footprint loading may also be included. Criteria are given to distinguish between these processes. Dewatering pipes are best recognized by a zone of deformed and fluidized sediment at the base, and association with non-life (lethal) facies. Care must be used in assigning specimens to ichnotaxa, and it is generally necessary to slab, and also to carry out stratinomic investigation in the field.
Resumo:
This paper considers the various complex changes that occur to nitrogen (N) containing compounds in forages through the processes of ensiling, rumen degradation and microbial synthesis, post-ruminal digestion and absorption and synthesis into milk protein. Particular emphasis is placed on reviewing recent data on the efficiency of utilisation of N-containing compounds in silages by rumen microbes, since low efficiency here is believed to be a major cause of large N losses to the environment on some silage-based diets. Data are reviewed which show that although rumen degradation of N compounds in silage is rapid and extensive, up to 10% of the soluble N can escape the rumen by being associated with the liquid phase. There is now firm evidence that the composition of the amino acids (AAs) absorbed is heavily dependent on the process of ensiling and that witting or use of certain silage additives conserve the initial amino acid profile of the forage. This provides an opportunity to manipulate the amino acid supply to better match demand thus potentially enhancing utilisation. This review confirms that utilisation of the N fractions in grass and legume silages in particular, is poor and the efficiency of microbial protein synthesis (EMPS) is consistently higher on maize silage-based diets. It is concluded that the way in which grass and legume silages in particular are produced and used in the future needs a radical rethink. New research needs to be aimed at enhancing the utilisation of N in the rumen through a better understanding of N/carbohydrate relationships and the ability of forages to supply degraded carbohydrate. Also more emphasis is needed on understanding of the potentially different role of the different N fractions that exist in silages. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland Japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes :511 h exposure to >= 33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C > 29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.
Resumo:
Current gas-based in vitro evaluation systems are extremely powerful research techniques. However they have the potential to generate a great deal more than simple fermentation dynamics. Details from four experiments are presented in which adaptation, and novel application, of an in vitro system allowed widely differing objectives to be examined. In the first two studies, complement methodologies were utilised. In such assays, an activity or outcome is inferred through the occurrence of a secondary event rather than by direct observation. Using an N-deficient incubation medium, the increase in starch fermentation, when supplemented with individual amino acids (i.e., known level of N) relative to that of urea (i.e., known quantity and N availability), provided an estimate of their microbial utilisation. Due to the low level of response observed with some arnino acids (notably methionine and lysine), it was concluded, that they may not need to be offered in a rumen-inert form to escape rumen microbial degradation. In another experiment, the extent to which degradation of plant cell wall components was inhibited by lipid supplementation was evaluated using fermentation gas release profiles of washed hay. The different responses due to lipid source and level of inclusion suggested that the degree of rumen protection required to ameliorate this depression was supplement dependent. That in vitro inocula differ in their microbial composition is of little interest per se, as long as the outcome is the same (i.e., that similar substrates are degraded at comparable rates and end-product release is equivalent). However where a microbial population is deficient in a particular activity, increasing the level of inoculation will have no benefit. Estimates of hydrolytic activity were obtained by examining fermentation kinetics of specific substrates. A number of studies identified a fundamental difference between rumen fluid and faecal inocula, with the latter having a lower fibrolytic activity, which could not be completely attributed to microbial numbers. The majority of forage maize is offered as an ensiled feed, however most of the information on which decisions such as choice of variety, crop management and harvesting date are made is based on fresh crop measurements. As such, an attempt was made to estimate ensiled maize quality from an in vitro analysis of the fresh crop. Fermentation profiles and chemical analysis confirmed changes in crop composition over the growing season, and loss of labile carbohydrates during ensiling. In addition, examination of degradation residues allowed metabolizable energy (ME) contents to be estimated. Due to difficulties associated with starch analysis, the observation that this parameter could be predicted by difference (together with an assumed degradability), allowed an estimate of ensiled maize ME to be developed from fresh material. In addition, the contribution of the main carbohydrates towards ME showed the importance of delaying harvest until maximum starch content has been achieved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.