7 resultados para Equação de Schrödinger
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
We discuss the time evolution of the wave function which is the solution of a stochastic Schrödinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.
Resumo:
We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)
Resumo:
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .
Resumo:
We consider the relation between so called continuous localization models—i.e. non-linear stochastic Schrödinger evolutions—and the discrete GRW-model of wave function collapse. The former can be understood as scaling limit of the GRW process. The proof relies on a stochastic Trotter formula, which is of interest in its own right. Our Trotter formula also allows to complement results on existence theory of stochastic Schrödinger evolutions by Holevo and Mora/Rebolledo.
Resumo:
Neste texto, irei abordar três filmes ambientados em Portugal, cujas locações oferecem uma visão privilegiada da função do tempo e da magnitude no cinema, os quais, por sua vez, nos permitem reavaliar as categorias de clássico, moderno e pós-moderno aplicadas a esse meio. Trata-se de O estado das coisas (Der Stand der Dinge, Wim Wenders, 1982), Terra estrangeira (Walter Salles and Daniela Thomas, 1995) e Mistérios de Lisboa (Raúl Ruiz, 2010). Neles, a cidade se compõe de círculos viciosos, espelhos, réplicas e mise-en-abyme que interrompem o movimento vertiginoso característico da cidade modernista do cinema dos anos 20. Curiosamente, é também o lugar em que a assim chamada estética pós-moderna finalmente encontra abrigo em contos auto-irônicos que expõem as insuficiências dos mecanismos narrativos no cinema. Para compensá-las, recorre-se a procedimentos de intermídia, tais como fotografias de polaroid em O estado das coisas ou um teatro de papelão em Mistérios de Lisboa, que transformam uma realidade incomensurável em miniaturas fáceis de enquadrar e manipular. O real assim diminuído, no entanto, se revela um simulacro decepcionante, um ersatz da memória que evidencia o caráter ilusório da teleologia cosmopolita. Em minha abordagem, começarei por examinar a gênese interligada e transnacional desses filmes que resultou em três visões correlatas mas muito diversas do fim da história e da narrativa, típico da estética pós-moderna. A seguir, irei considerar o miniaturismo intermedial como uma tentativa de congelar o tempo no interior do movimento, uma equação que inevitavelmente nos remete ao binário deleuziano tempo-movimento, que também irei revisitar com o fim de distingui-lo da oposição entre cinema clássico e moderno. Por fim, irei propor a stasis reflexiva e a inversão de escala como demonominadores comuns entre todos os projetos ditos modernos, que por esta razão, segundo creio, são mais confiáveis que a modernidade enquanto indicadores de valores artísticos e políticos.