44 resultados para Epithelial Tissues
em CentAUR: Central Archive University of Reading - UK
Resumo:
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.
Resumo:
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.
Resumo:
PARs (protease-activated receptors) are a family of four G-protein-coupled receptors for proteases from the circulation, inflammatory cells and epithelial tissues. This report focuses on PAR(2), which plays an important role in inflammation and pain. Pancreatic (trypsin I and II) and extrapancreatic (trypsin IV) trypsins, mast cell tryptase and coagulation factors VIIa and Xa cleave and activate PAR(2). Proteases cleave PAR(2) to expose a tethered ligand that binds to the cleaved receptor. Despite this irreversible activation, PAR(2) signalling is attenuated by beta-arrestin-mediated desensitization and endocytosis, and by lysosomal targeting and degradation, which requires ubiquitination of PAR(2). beta-Arrestins also act as scaffolds for the assembly of multi-protein signalling complexes that determine the location and function of activated mitogen-activated protein kinases. Observations of PAR(2)-deficient mice support a role for PAR(2) in inflammation, and many of the effects of PAR(2) activators promote inflammation. Inflammation is mediated in part by activation of PAR(2) in the peripheral nervous system, which results in neurogenic inflammation and hyperalgesia.
Resumo:
Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].
Resumo:
Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10-4 M methylparaben, 10–5 M n-propylparaben or 10–5 M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10–6 M methylparaben, 10–7 M n-propylparaben and 10–7 M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.
Resumo:
Shiga toxin (Stx)-positive Escherichia coli O157:117 readily colonize and persist in specific-pathogen-free (SPF) chicks, and we have shown that an Stx-negative E. coli O157:117 isolate (NCTC12900) readily colonizes SPF chicks for up to 169 days after oral inoculation at 1 day of age. However, the role of intimin in the persistent colonization of poultry remains unclear. Thus, to investigate the role of intimin and flagella, which is a known factor in the persistence of non-O157 E. coli in poultry, isogenic single- and double-intimin and aflagellar mutants were constructed in E. coli O157:117 isolate NCTC12900. These mutants were used to inoculate (10(5) CFU) 1-day-old SPF chicks. In general, significant attenuation of the aflagellate and intiminaflagellate mutants, but not the intimin mutant, was noted at similar time points between 22 and 92 days after inoculation. The intimin-deficient mutant was still being shed at the end of the experiment, which was 211 days after inoculation, 84 days more than the wild type. Shedding of the aflagellar and intimin-aflagellar mutants ceased 99 and 113 days after inoculation, respectively. Histological analysis of gastrointestinal tissues from inoculated birds gave no evidence for true microcolony formation by NCTC12900 or intimin and aflagellar mutants to epithelial cells. However, NCTC12900 mutant derivatives associated with the mucosa were observed as individual cells and/or as large aggregates. Association with luminal contents was also noted. These data suggest that O157 organisms do not require intimin for the persistent colonization of chickens, whereas flagella do play a role in this process.
Resumo:
Multilayered hydrogel coatings can be developed on the surface of glass slides via layer-by-layer deposition of hydrogen-bonded interpolymer complexes formed by poly(acrylic acid) and methylcellulose. Chemical modification of the glass surface with (3-aminopropyl)triethoxysilane with subsequent layer-by-layer deposition and cross-linking of interpolymer complexes by thermal treatment allows fabrication of ultrathin hydrogel coatings, not detachable from the substrate. The thickness of these coatings is directly related to the number of deposition cycles and cross-linking conditions. An unusual dependence of the hydrogel swelling properties on the sample thickness is observed and can be interpreted by gradual transitions between two- and three-dimensional networks. The hydrogels exhibit pH-responsive swelling behaviour, achieving higher swelling degrees at pH > 6.0. These coatings can be used as model substrates to study the adhesive properties of pharmaceutical tablets and can potentially mimic the total work of adhesion observed for the detachment of mucoadhesives from porcine buccal mucosa but fail to exhibit identical detachment profiles.
Resumo:
We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.
Resumo:
The objective of this study was to determine the distribution of total selenium (Se) and of the proportion of total Se comprised as the selenized amino acids selenomethionine (SeMet) and selenocysteine (SeCys) within the post mortem tissues of lambs that were fed high dose selenized enriched yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty two Texel X Suffolk lambs (6.87 ± 0.23 kg BW) were offered both reconstituted milk replacer and a pelleted diet, both of which had been either supplemented with high SY (6.30 ± 0.18 mg Se/kg DM) or unsupplemented (0.13 ± 0.01 mg Se/kg of DM), depending on treatment designation, for a continuous period of 91 d. At enrollment and 28, 56 and 91 d following enrollment lambs were blood sampled. At the completion of the treatment period, five lambs from each treatment group were euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) were retained for Se analysis. The inclusion of high SY increased (P < 0.001) whole blood Se concentration, reaching a maximum mean value of 815.2 ± 19.1 ng Se/mL compared with 217.8 ± 9.1 ng Se/mL in control animals. Tissue total Se concentrations were significantly (P < 0.001) higher in SY supplemented animals than in controls irrespective of tissue type; values were 26, 16, 8 and 3 times higher in skeletal muscle, liver, heart and kidney tissue of HSY lambs when compared to controls. however, the distribution of total Se and the proportions of total Se comprised as either SeMet or SeCys differed between tissue types. Selenocysteine was the predominant selenized amino acid in glandular tissues, such the liver and kidney. irrespective of treatment, although absolute values were markedly higher in HSY lambs. Conversely selenomethionine was the predominat selenized amino acid in cardiac and skeletal muscle (Longissimus Dorsi, and Psoas Major) tissues in HSY animals, although the same trend was not apparent for control lambs in which SeCys was the predominant selenized amino acid. It was concluded that there were increases in both whole blood and tissue total Se concentrations as a result of dietary supplementation with high dose of SY. Furthermore, distribution of total Se and Se species differed between both treatment designation and tissue type.
Resumo:
The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of lambs in the six weeks period following the withdrawal of a diet containing high dose selenized yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty Texel x Suffolk lambs used in this study had previously received diets (91 days) containing either high dose SY (HSY; 6.30 mg Se/kg DM) or an unsupplemented control (C; 0.13 mg Se/kg DM). Following the period of supplementation all lambs were then offered a complete pelleted diet, without additional Se (0.15 mg Se/kg DM), for 42 days. At enrollment and 21 and 42 days later, five lambs from each treatment were blood sampled, euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) tissue were retained. Total Se concentration in whole blood and tissues was significantly (P < 0.001) higher in HSY lambs at all time points that had previously received long term exposure to high dietary concentrations of SY. The distribution of total Se and the proportions of total Se comprised as SeMet and SeCys differed between tissues, treatment and time points. Total Se was greatest in HSY liver and kidney (22.64 and 18.96 mg Se/kg DM, respectively) and SeCys comprised the greatest proportion of total Se. Conversely, cardiac and skeletal muscle (Longissimus Dorsi and Psoas Major) tissues had lower total Se concentration (10.80, 7.02 and 7.82 mg Se/kg DM, respectively) and SeMet was the predominant selenized amino acid. Rates of Se clearance in HSY liver (307 µg Se/day) and kidney (238 µg Se/day) were higher compared with HSY cardiac tissue (120 µg Se/day) and skeletal muscle (20 µg Se/day). In conclusion differences in Se clearance rates were different between tissue types, reflecting the relative metabolic activity of each tissue, and appear to be dependant upon the proportions of total Se comprised as either SeMet or SeCys.
Resumo:
We have investigated differences in bovine limbal epithelial cell differentiation when expanded upon intact (amniotic epithelial cells and basement membrane remaining) and denuded human amniotic membrane, a commonly used substrate in ophthalmic surgery for corneal stem cell transplantation. Ex vivo expansion of the epithelial cells, in supplemented media, continued for 2 weeks followed by 1 week under ‘air-lifting’ conditions. Before and after air-lifting the differentiated (K3/K12 positive) and undifferentiated (K14 positive) cells were quantified by immunohistochemistry, Western blotting and quantitative PCR. Limbal epithelial cells expanded upon amniotic membrane formed 4-6 stratified layers, both on intact and denuded amniotic membrane. On denuded amniotic membrane the proportion of differentiated cells remained unaltered following airlifting. Within cells grown on intact amniotic membrane, however, the number of differentiated cells increased significantly following air-lifting. These results have important implications for both basic and clinical research. Firstly, they show that bovine limbal epithelia can be used as an alternative source of cells for basic research investigating ex vivo limbal stem cells expansion. Secondly, these findings serve as a warning to clinicians that the affect of amniotic membrane on transplantable cells is not fully understood; the use of intact or denuded amniotic membrane can produce different results in terms of the amount of differentiation, once cells are exposed to the air.
Resumo:
The aim was to determine the fate of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. Male broiler chicks (n = 24) were allocated at 1 day old to each of four treatment diets designated T1-T4. T1 and T2 contained the near isogenic nongenetically modified (GM) maize grain, whereas T3 and T4 contained GM maize grain [cry1a(b) gene]; T1 and T3 also contained the near isogenic non-GM soybean meal, whereas T2 and T4 contained GM soybean meal (cp4epsps gene). Four days prior to slaughter at 39-42 days old, 50% of the broilers on T2-T4 had the source(s) of GM ingredients replaced by their non-GM counterparts. Detection of specific DNA sequences in feed, tissue, and digesta samples was completed by polymerase chain reaction analysis. Seven primer pairs were used to amplify fragments (similar to 200 bp) from single copy genes (maize high mobility protein, soya lectin, and transgenes in the GM feeds) and multicopy genes (poultry mitochondrial cytochrome b, maize, and soya rubisco). There was no effect of treatment on the measured growth performance parameters. Except for a single detection of lectin (nontransgenic single copy gene; unsubstantiated) in the extracted DNA from one bursa tissue sample, there was no positive detection of any endogenous or transgenic single copy genes in either blood or tissue DNA samples. However, the multicopy rubisco gene was detected in a proportion of samples from all tissue types (23% of total across all tissues studied) and in low numbers in blood. Feed-derived DNA was found to survive complete degradation up to the large intestine. Transgenic DNA was detected in gizzard digesta but not in intestinal digesta 96 h after the last feeding of treatment diets containing a source of GM maize and/or soybean meal.
Resumo:
Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.