4 resultados para Enzymes -- Structure

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A completely randomised study was completed to examine the influence of fibrolytic enzymes derived from psychrophilic, (F), mesophilic, (L) or thermophilic (Ta) sources, applied at ensiling, on the chemical characteristics and in vitro rumen fermentation of maize silage, assessed using the Reading Pressure Technique (RPT). Treatments, all in triplicate, consisted of untreated maize forage or treated with preparations F, L, Ta or a mixture (1: 1, v/v) of F and L (FL), at two levels each, and ensiled for 210 days in plastic mini-silos. Addition of enzymes L decreased (P < 0.05) silage pH relative to the control, whereas enzyme Ta tended (P < 0.10) to reduce it. Preparations F, L and Ta tended to reduce (P < 0.10) the fibre contents of the silages, with effects being attributable to a decrease in the cellulose fraction. Starch contents were reduced (P < 0.05) in the treatments including enzyme F. End-point (96 h) gas production (GP) values did not differ among treatments, suggesting that enzymes did not change the total amount of fermentable substrate. However, consistent with the decrease in starch contents, adding enzyme F reduced (P < 0.05) GP at most incubation times. Addition of enzymes increased (P < 0.05) the initial (6 h) organic matter degradation (OMD) levels in all but one treatment (F), with increases of 14, 19, and 26% for preparations L, Ta, and FL, respectively, averaged across levels. Furthermore, the addition of enzymes increased (P < 0.05) the soluble OM losses, however, these increases did not fully account for the initial increase in OMD. The latter suggests that enzymes increased solubility and also altered silage structure, making it more amenable to degradation by ruminal microorganisms. As a result of the increase in OMD, without a concomitant increase in GP, the fermentation efficiency was greatly increased (P < 0.05) in enzyme treatments. Addition of enzymes to maize at ensiling, particularly those from the mesophilic and thermophilic sources used here, have the potential to increase the initial rate of silage OMD. (C) 2003 Elsevier B.V. All rights reserved.