8 resultados para Enzyme Inhibitors -- pharmacology
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Medication errors are an important cause of morbidity and mortality in primary care. The aims of this study are to determine the effectiveness, cost effectiveness and acceptability of a pharmacist-led information-technology-based complex intervention compared with simple feedback in reducing proportions of patients at risk from potentially hazardous prescribing and medicines management in general (family) practice. Methods: Research subject group: "At-risk" patients registered with computerised general practices in two geographical regions in England. Design: Parallel group pragmatic cluster randomised trial. Interventions: Practices will be randomised to either: (i) Computer-generated feedback; or (ii) Pharmacist-led intervention comprising of computer-generated feedback, educational outreach and dedicated support. Primary outcome measures: The proportion of patients in each practice at six and 12 months post intervention: - with a computer-recorded history of peptic ulcer being prescribed non-selective non-steroidal anti-inflammatory drugs - with a computer-recorded diagnosis of asthma being prescribed beta-blockers - aged 75 years and older receiving long-term prescriptions for angiotensin converting enzyme inhibitors or loop diuretics without a recorded assessment of renal function and electrolytes in the preceding 15 months. Secondary outcome measures; These relate to a number of other examples of potentially hazardous prescribing and medicines management. Economic analysis: An economic evaluation will be done of the cost per error avoided, from the perspective of the UK National Health Service (NHS), comparing the pharmacist-led intervention with simple feedback. Qualitative analysis: A qualitative study will be conducted to explore the views and experiences of health care professionals and NHS managers concerning the interventions, and investigate possible reasons why the interventions prove effective, or conversely prove ineffective. Sample size: 34 practices in each of the two treatment arms would provide at least 80% power (two-tailed alpha of 0.05) to demonstrate a 50% reduction in error rates for each of the three primary outcome measures in the pharmacist-led intervention arm compared with a 11% reduction in the simple feedback arm. Discussion: At the time of submission of this article, 72 general practices have been recruited (36 in each arm of the trial) and the interventions have been delivered. Analysis has not yet been undertaken.
Resumo:
BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.
Resumo:
Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site.
Resumo:
Possible evidence is presented for Maillard glycation of enzymes during oligosaccharide synthesis by reverse hydrolysis. In 70% (w/v) mannose solutions, 1,2-alpha-mannosidase from Penicillium citrinum lost 40% and alpha-mannosidase from almonds lost 60% activity at 55 degreesC over 2 weeks. Oligosaccharide yields were 15 and 45% respectively. Higher molecular weight glycation adducts were formed in a time-dependent manner as seen by MALDI-TOF. Inhibitors of the Maillard. reaction were able to partially alleviate these effects resulting in reduced loss of enzyme activity and oligosaccharide yield increases of 27-53% relative to the control. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.
Resumo:
Plasmepsin 4 (PM4) is a digestive vacuole enzyme found in all Plasmodium species examined to date. While P. falciparum has three additional aspartic proteinases in its digestive vacuole in addition to plasmepsin 4, other Plasmodium species have only PM4 in their digestive vacuole. Therefore, PM4 may be a good target for the development of an antimalarial drug. This study presents data obtained with PM4s from several Plasmodium species. Low nanomolar K-i values have been observed for all PM4s studied.
Resumo:
Background and Purpose: Calcitonin gene‐related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR•RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin‐converting enzyme‐1 (ECE‐1). However, it is not known if ECE‐1 regulates the resensitization of CGRP‐induced responses in functional arterial tissue. Experimental Approach: CLR, ECE‐1a‐d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA‐SMCs) and mesenteric arteries was analyzed by RT‐PCR and by immunofluorescence and confocal microscopy. CGRP‐induced signaling in cells was examined by measuring cAMP production and ERK activation. CGRP‐induced relaxation of arteries was measured by isometric wire myography. ECE‐1 was inhibited using the specific inhibitor, SM‐19712. Key Results: RMA‐SMCs and arteries contained mRNA for CLR, ECE‐1a‐d and RAMP1. ECE‐1 was present in early endosomes of RMA‐SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium‐independent relaxation of arteries. ECE‐1 inhibition had no effect on initial CGRP‐induced responses but reduced cAMP generation in RMA‐SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. Conclusions and Implications: ECE‐1 regulates the resensitization of responses to CGRP in RMA‐SMCs and mesenteric arteries. CGRP‐induced relaxation does not involve endothelium‐derived pathways. This is the first report of ECE‐1 regulating CGRP responses in SMCs and arteries. ECE‐1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Resumo:
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.